• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental And Numerical Studies On Fire In Tunnels

Celik, Alper 01 September 2011 (has links) (PDF)
Fire is a complex phenomenon including many parameters. The nature of fire makes it a very dangerous and hazardous. For many reasons the number of tunnels are increasing on earth and fire safety is one of the major problem related to tunnels. This makes important to predict and understand the behavior of fire, i.e., heat release rate, smoke movement, ventilation effect etc. The literature includes many experimental and numerical analyses for different conditions for tunnel fires. This study investigates pool fire of three different fuel sources: ethanol, gasoline and their mixture for different ventilation conditions, different geometries and different amounts. Combustion gases and the burning rates of the fuel sources are measured and analyzed. The numerical simulation of the cases is done with Fire Dynamics Simulator (FDS), a CFD code developed by NIST.
12

Water Spray Suppression and Intensification of High Flash Point Hydrocarbon Pool Fires

Ho, San-Ping 29 August 2003 (has links)
"The primary purpose of this research was to quantify fire suppression and fire intensification phenomena for water spray application to high flash point hydrocarbon oil pool fires. Test data and analyses of the phenomena include the drop size distribution and application and delivered densities of various water sprays, and spray-induced oil cooling and oil splattering for mineral seal oil and for cooking oil 30-cm diameter pool fires. Four different types of tests were conducted as described below. A Dantec Particle Dynamic, phase Doppler, Analyzer was used to measure the water drop sizes and velocities generated by 13 selected nozzles and sprinkler heads. Most measurements were made 0.91 m (3 ft) below the nozzles/sprinklers, since this was the location of the center of the hydrocarbon pool in later fire tests. The correlations for the volume-median drop diameter, dw, were of the form , where D is the nozzle orifice and is the spray Weber number based on D and the nozzle velocity. A ring burner was designed and constructed for uniformly heating oil pool surfaces from above and igniting them. The resulting oil temperatures while the oil was heated to its flash point satisfied the one-dimensional transient heat conduction model for a semi-infinitely thick solid with a shallow heated layer near the surface. Water sprays actuated when the oil surface temperature reached its flash point rapidly cooled the heated layer and caused mixing with the cooler oil below. Fire suppression tests were conducted to determine the relationship between required water spray density, drop size, and oil temperature in order to achieve suppression. A data correlation using non-dimensional parameters was developed to quantify the fire suppression criteria for the high flash point oil fires. Oil pool fires with the higher flash point oils, such as the 291oC flash point soybean oil, could be suppressed with much lower water densities than those of the lower flash point (137oC) mineral seal oil. However, if the water spray drop sizes are sufficiently small, the lower flash point oil fires can also be extinguished with lower spray densities. The NFPA 15 specified critical water density (0.30 gpm/ft2, 12 mm/min) to extinguish high flash point pool fires is only valid for mineral seal oil when the drop size is lower than about 300 µm. It is valid with larger drop sprays only when the flash point of the oil is higher than 190 according to the correlation developed here. Spray-induced pool fire intensification tests were conducted under a fire products calorimeter for measuring heat release rates. Supplemental oil vaporization rate tests were also conducted to determine the contributions of oil vaporization and oil splattering to the intensified fire. Results showed that vaporization could only account for between 1% and 1.7% of the heat release rate in intensified mineral seal oil fires, and less than 1% of the heat release rate in intensified soybean oil fires. The remainder is due to spray-induced oil splattering, which increased with increasing drop Weber number as well as increased oil temperature. The heat release rate is enhanced by factor from 2.12 to 5.55 compared to the heat release rate of free burning cooking oil. For mineral seal oil, this ratio is in the range 0.92 to 1.25 for the spray conditions tested. Correlations with the dimensionless factors of and the Weber number of the water spray were also developed to quantify the ratio of the splattered oil to applied spray density."
13

Modeling Mild Thermal Cracking of Heavy Crude Oil and Bitumen with VLE Calculations

Guerra, André 20 August 2018 (has links)
The current shortage of crude oil from conventional sources has increased interest in developing unconventional resources such as oil sands. Heavy crudes and bitumen are found in Northern Alberta and their exploration, processing, and transport to market pose challenges in the use of these resources. Part of the solution to these challenges involves the reactive thermal processing of heavy crudes and bitumen. This thesis focused on mild thermal cracking reactions, and two studies regarding these reactions were presented. The first was an experimental study performed in a pilot-scale semi-batch reactor. The three crude oils were heated to 350, 400, 425, and 450°C at 1240 kPa. A five-lump reaction model combined with a process simulator with VLE calculations was fitted with the experimental data obtained. The goodness of fit between the model predicted values and experimental values for the Hardisty (MBL), Albian Heavy Synthetic (AHS), and Christina Lake Dilute Bitumen (CDB) were determined to be 0.99, 0.99, and 0.98, respectively. Moreover, 80, 85, and 89% of the optimized model’s predicted values had less than 10% error for MBL, AHS, and CDB, respectively. The second study described the implementation of a mild thermal cracking reaction model to the development of a train car fire-model for the assessment of safety aspects in the design of train cars used to transport crude oil. Case studies were conducted using the UniSim® depressuring utility and a previously developed mild thermal cracking reaction model to demonstrate the effect of compositional change. Three crude oils with varying properties and representative of the types of crudes transported by rail in Canada were used here: MBL, AHS, and CDB. The case studies conducted showed the performance of a train car fire-model to be dependent on the crude oil characteristics: up to -57% and -99% difference in model predicted variables for AHS and CDB, respectively, when compared to MBL. Furthermore, the model’s performance was also shown to be affected by the compositional change of a given crude oil due to mild thermal cracking reactions: up to 42% difference in model predicted variables when compared to the base case.
14

Convergence and Scaling Analysis of Large-Eddy Simulations of a Pool Fire

Charles Zhengchen Guo (18503541) 06 May 2024 (has links)
<p dir="ltr">Grid convergence and scaling analyses have not been done rigorously for practical large-eddy simulations (LES). The challenge arises from the fact that there are two grid-related length scales: grid size and LES filter width. It causes the numerical and model errors in LES to be inherently coupled, making the convergence of either error difficult to analyze. This study works to overcome the challenge by developing scaling laws that can be used to guide the convergence analysis of errors in LES. Three different convergence cases are considered, and their respective scaling laws are developed by varying the ratio between grid size and filter width. A pool fire is adopted as a test case for the convergence analysis of LES. Qualitative and quantitative assessments of the LES results are made first to ensure reliable numerical solutions. In the subsequent scaling analysis, it is found that the results are consistent with their respective scaling laws. The results provide strong support to the developed scaling laws. The work is significant as it proposes a rigorous way to guide convergence analysis of LES errors. In a world where LES already has a wide range of applicability and is still becoming more prominent, it is imperative to have a thorough understanding of how it works including its convergence and scaling laws with respect to the change of grid size and filter width.</p>

Page generated in 0.0159 seconds