• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bio-compatible coatings for bone implants.

Clearwater, Deborah Jayne January 2009 (has links)
Pulse Pressure Metal-Organic Chemical Vapour Deposition (PP-MOCVD) is a technique for creating thin coatings. It is less dependent on the volatility of precursors than other Chemical Vapour Deposition (CVD) processes as the precursors are introduced into the reaction chamber as an aerosol; therefore sublimation of the precursor is not necessary. This allows solutions of multiple compounds to be created with a known concentration and ratio of precursors. We explored the formation of hydroxyapatite (HAp) coatings for use on bone implants, using a methanolic solution of calcium lactate and trimethyl phosphate (TMP) as a PP-MOCVD precursor solution. The thermal decomposition of the precursors and the reaction between them were investigated using Thermogravimetric Analysis (TGA). Several variables on the PP-MOCVD apparatus were varied to test their effect on the formed coating: deposition temperatures, ratio of precursors, number of pulses, precursor concentration, the use of ambient temperatures and annealing the coatings after formation. All the coatings were analysed using Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and Fourier Transform Infra-Red spectroscopy (FTIR). These coatings were not uniformly smooth in appearance at the micro level. However, using higher deposition temperatures, an excess ratio of TMP to calcium lactate and annealing the coatings for short periods of time and low temperatures improved the uniformity of the coating. When vigorous annealing was performed it resulted in surface oxidation and the production of titanium dioxide (TiO2 ). The EDS results showed that both calcium and phosphorus were present in the coatings. The use of high deposition temperatures, excess TMP or gentle annealing resulted in calcium to phosphorous ratios similar to the stoichiometry of HAp. These same conditions gave improved coating uniformity.
2

Bio-compatible coatings for bone implants.

Clearwater, Deborah Jayne January 2009 (has links)
Pulse Pressure Metal-Organic Chemical Vapour Deposition (PP-MOCVD) is a technique for creating thin coatings. It is less dependent on the volatility of precursors than other Chemical Vapour Deposition (CVD) processes as the precursors are introduced into the reaction chamber as an aerosol; therefore sublimation of the precursor is not necessary. This allows solutions of multiple compounds to be created with a known concentration and ratio of precursors. We explored the formation of hydroxyapatite (HAp) coatings for use on bone implants, using a methanolic solution of calcium lactate and trimethyl phosphate (TMP) as a PP-MOCVD precursor solution. The thermal decomposition of the precursors and the reaction between them were investigated using Thermogravimetric Analysis (TGA). Several variables on the PP-MOCVD apparatus were varied to test their effect on the formed coating: deposition temperatures, ratio of precursors, number of pulses, precursor concentration, the use of ambient temperatures and annealing the coatings after formation. All the coatings were analysed using Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and Fourier Transform Infra-Red spectroscopy (FTIR). These coatings were not uniformly smooth in appearance at the micro level. However, using higher deposition temperatures, an excess ratio of TMP to calcium lactate and annealing the coatings for short periods of time and low temperatures improved the uniformity of the coating. When vigorous annealing was performed it resulted in surface oxidation and the production of titanium dioxide (TiO2 ). The EDS results showed that both calcium and phosphorus were present in the coatings. The use of high deposition temperatures, excess TMP or gentle annealing resulted in calcium to phosphorous ratios similar to the stoichiometry of HAp. These same conditions gave improved coating uniformity.
3

Development of a PP-MOCVD System and its Design and Operational Parameters for Uniform Industrial Coatings on 3D Objects

Lee, Darryl Liang Wee January 2014 (has links)
Increase in demand for uniform ceramic coatings on larger industrial components have led to a need for a PP-MOCVD coating system scale up. The objective of this thesis is to develop a fully functional coating system operating in the PP-MOCVD regime that is able to deposit thin film ceramic coatings on commercial or industrial components with complex 3D geometries. This can be achieved by applying engineering and vacuum science theories, coupled with the established fundamentals of PP-MOCVD. A larger system was designed and assembled around the boundaries set by the dimensions and geometry of a stainless steel water pump impellor acting as the base substrate. Most of the components were sourced off the shelf from vacuum and fluid specialists. Components which were unavailable for various reasons were designed, and machined in-house by the departmental workshop. Initial test depositions were conducted using small stainless steel disk substrates, heated using a resistive heater similar to the one utilised on the research scale system. The test depositions were performed with the heater and substrate combination placed in strategic locations. This is to test the overall uniformity of precursor flux in the chamber volume. The resulting coating uniformity on the disk surfaces were fair but problems such as the large collection of unreacted precursor on the chamber viewport and valve timing issues had to be addressed. Before making any improvements to the system, each of the process areas leading to a successful deposition needed to be understood. Five process areas were developed: ‘Liquid Delivery’, ‘Atomization’, ‘Evaporation’, ‘Transport and Reactor Geometry’, and ‘Droplet Management’. Each of the process areas were analysed individually and changes were made to push for a maximum evaporation efficiency. xviii The improved system provided opportunities to perform depositions that were once not possible for PP-MOCVD. Two sets of deposition tests were designed and conducted. Firstly, the improvements were justified with a series of depositions using flat stainless steel plates with dimensions 65x65x5mm. The other set of 3D case study depositions involve observing the effects of the operational parameters of PP-MOCVD on the uniformity and penetration depths of the coatings into different sized macro blind trenches. Five geometric setup conditions were used to justify the improvements made to the system. These are: ‘Substrate positioned in the direct line of spray’, ‘Use of an unheated receptor’, ‘Use of a heated receptor’, ‘Use of an unheated receptor with a non-axial substrate setup’, and “Choked Flow’. As expected, the uniformity of the coatings on both sides of the plate varied significantly when the substrate is placed over the line of sight of the precursor spray. Similarly, the coating produced under the induced choked flow condition resulted in low conformality. The introduction of an unheated receptor plate resulted in an increase in uniformity on both sides of the plate. Further prove that PP-MOCVD is geometry independent is provided by the deposition made with the non-axial substrate placement resulting in a coating of similar result to the unheated receptor. The use of a heated receptor provided a source for a secondary evaporation of the larger precursor droplets collected resulting in an increase in coating thickness while maintaining good conformality. The effects of temperature, pressure, injection volume, and concentration were explored in the final case study. With maximum depths of 50mm, the macro blind trenches has an aspect ratio of 1:1 and cross-sectional areas of 3x3mm, 9x9mm, and 15x15mm. The final results show that as the temperature rises, the depth penetrated into the trench decreases. This could be due to the change in rate limiting steps as homogeneous reactions begin to increase at higher temperatures. Similar trends were observed with increasing pressure. As the pressure difference between the volume of the trenches and the rest of the chamber decreases, the push needed to xix force the precursor down the trench also decreases, resulting in less depth penetration. The effects of injection volume and concentration observed, can be explained by how much precursor molecules are present during one pulse cycle. The more that is available at any given time, the more likely a reaction will occur and deeper the penetration will get. Of course a ceiling or a limit exists where the molecules in the chamber will get evacuated without being reacted. The future work made possible as a result of the scaled up system are proposed. These include a scale up of the operational parameters to suit any given substrate geometry, improvements to the heating source to achieve greater thermal uniformity, further improvements to the overall system accessibility, and performing other depositions using different substrate materials and precursor types.

Page generated in 0.024 seconds