• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the mitochondrial translation apparatus of Arabidopsis thaliana / Caractérisation de la machinerie de traduction mitochondriale chez Arabidopsis thaliana

Waltz, Florent 06 December 2018 (has links)
Dans les cellules eucaryotes, différents types de ribosomes coexistent. Les ribosomes mitochondriaux synthétisent les quelques protéines codées par l’ADN mitochondrial, qui sont essentielles au fonctionnement de l’organisme. Ces ribosomes sont particulièrement divergents des ribosomes procaryotes, mais sont également très différents entre les eucaryotes. Mon travail de thèse s'est concentré sur la caractérisation de la structure et de la composition en protéines du ribosome mitochondrial de la plante modèle Arabidopsis thaliana. Des approches biochimiques complémentaires ont permis d’identifier 19 protéines uniquement trouvées dans le mitoribosome de plante, parmi lesquelles 10 sont des protéines PPR, des protéines particulièrement abondantes chez les plantes. Les mutations des gènes codant pour ces PPR ribosomales (rPPR) mènent à l’apparition de phénotypes macroscopiques distincts, notamment une létalité ou des retards de croissance importants. L'analyse moléculaire du mutant rppr1 par profilage des ribosomes, ainsi que l'analyse du taux de protéines mitochondriales, révèlent que la protéine rPPR1 est un facteur de traduction générique, ce qui constitue une nouvelle fonction des protéines PPR. De plus, la cryo-électron microscopie a été utilisée pour déterminer l’architecture tridimensionnelle de ce mitoribosome. Cette approche a révélé la structure unique du mitoribosome de plante, caractérisée par une très grande petite sous-unité ribosomale ayant un domaine additionnel jamais décrit jusqu’à présent. Globalement, mes résultats ont montré que le mitoribosome d’Arabidopsis est complètement différent des ribosomes bactériens et des autres mitoribosomes eucaryotes, à la fois en terme de structure mais aussi de composition, permettant ainsi de mieux comprendre l’évolution de ce composant central de l’expression génétique. / Ribosomes are the molecular machines translating the genetic information carried by mRNA into protein. Different translation machineries co-exist in eukaryote cells. While cytosolic translation is comparatively well characterized, it remains the most elusive step of gene expression in mitochondria. In plants, while numerous pentatricopeptide repeat (PPR) proteins are involved in all steps of gene expression, their function in translation remains unclear. My work focused on the biochemical characterisation of Arabidopsis mitochondrial ribosomes and the identification of its protein composition. Complementary biochemical approaches identified 19 plant specific mitoribosome proteins, among which 10 are PPR proteins. The knock out mutations of ribosomal PPR (rPPR) genes result in distinct macroscopic phenotypes including lethality or severe growth delays. The molecular analysis of rPPR1 mutants, using ribosome profiling, as well as the analysis of mitochondrial protein levels, revealed that rPPR1 is a generic translation factor, which is a novel function for PPR proteins. Finally, single particle cryo-electron microscopy was used and revealed the unique structural architecture of Arabidopsis mitoribosomes, characterised by a very large small ribosomal subunit, larger than the large subunit, with a novel head domain. Overall, my results showed that Arabidopsis mitoribosomes are completely distinct from bacterial and other eukaryote mitoribosomes, both in terms of structure and of protein content.
2

Identification du facteur catalytique du processus d'edition des ARN des organites chez les plantes = Identification of the RNA editing enzyme in plant organelles

Salone, Véronique January 2009 (has links)
Il serait opportun de débuter cette introduction en donnant une définition claire du processus d'édition des ARN, mais c'est aussi un exercice périlleux car le terme d'édition des ARN a été utilisé dans la littérature pour décrire une multitude de processus biochimiques différents et la distinction entre les processus d'édition ou de modification est parfois confuse. Le terme d’édition des ARN a été utilisé pour la première fois en 1986 pour décrire l’insertion de 4 résidus uridines dans le transcrit mitochondrial coxII chez le trypanosome (Benne et al., 1986). La communauté scientifique était sceptique et on a alors pensé que ce mécanisme était sans doute spécifique à ce « drôle » de protozoaire. Puis, rapidement, l'édition d'ARNm a été décrite chez de nombreux organismes eucaryotes, soit pour expliquer des processus d'insertions ou de délétions de nucléotides (qui altèrent le nombre de nucléotides contenus dans la molécule d'ARN) soit pour décrire des conversions ou des remplacements de nucléotides (qui altèrent l'identité des nucléotides contenus dans la molécule d'ARN). Plus tard, le terme d'édition des ARN a été utilisé pour décrire des désaminations (le plus fréquemment C-en-U, et A-en-I) survenant dans les ARNt et les ARNr d'organismes eucaryotes et procaryotes, mais aussi des modifications mineures des résidus (comme l'ajout de groupement méthyl). De même la polyadénylation de la partie 3' de certains ARNt est aussi communément appelée processus d'édition des ARN. Enfin, un phénomène d'édition cotranscriptionnel des ARN lié au « patinage » de l'ARN polymérase a également été mis en évidence chez certains virus.
3

Caractérisation biochimique de deux protéines PPR mitochondriales de la sous famille Rf-like chez Arabidopsis thaliana / Biochemical caracterization of two PPR proteins of Rf-like subfamily in Arabidopsis thaliana

Planchard, Noelya 28 September 2017 (has links)
Les mitochondries sont le siège de la respiration cellulaire et possèdent un petit nombre de gènes essentiels dont l’expression est dirigée presque exclusivement par des protéines d’origine nucléaire. Les protéines de la famille PPR (PentatricoPeptide Repeat) font partie de ces acteurs et interviennent à toutes les étapes de l’expression des ARNs des organites, allant de la transcription à la traduction. De manière intéressante, les végétaux codent de nombreuses protéines PPR (environ 500 chez l’espèce modèle Arabidopsis thaliana), et sont de fait des modèles idéaux pour comprendre le rôle et le fonctionnement de ces protéines. Elles correspondent à des protéines de liaison aux ARNs très spécifiques, caractérisées par la présence de répétitions en tandem d’environ 35 acides aminés. Au sein de la famille PPR, le sous-groupe de gènes appelé « Restorer of Ferility Like » (ou RFL) s’oppose aux autres PPR car ils subissent une sélection diversifiante, et non purifiante, comme c’est le cas pour les PPR classiques. Certaines protéines RFL décrites chez d’autres espèces modèles telles que le riz ou encore le radis, appelées restauratrices de fertilité, inhibent l’expression de gènes mitochondriaux inducteurs de stérilité mâle. La famille RFL comporte 26 membres chez Arabidopsis thaliana.Afin de mieux comprendre la diversité fonctionnelle des gènes RFL, notre équipe a procédé à la caractérisation de l’ensemble des mutants rfl chez Arabidopsis, et seules les lignées affectées dans les gènes RFL22 et RFL23 affichent des altérations phénotypiques remarquables. Au cours de ma thèse, j’ai caractérisé les protéines RFL22 et RFL23 pour comprendre leur rôle et leur mécanisme d’action moléculaire. L’étude des mutants rfl22 et rfl23 a montré que ces gènes sont essentiels pour la mise en place de la chaine respiratoire. Le mutant rfl22 ne produit plus de cytochromes de type c matures (ce qui affecte l’activité des complexes respiratoires III et IV), tandis que le mutant rfl23 n’accumule plus de complexe I de la chaine respiratoire.Après avoir adapté le protocole de profilage de ribosomes aux mitochondries de plantes, j’ai pu découvrir que les protéines RFL22 et RL23 étaient indispensables à la traduction d’ARNm mitochondriaux spécifiques : ccmFn₂ codant une sous-unité du complexe hème lyase et nad4L codant une sous-unité du complexe I, respectivement. D’autre part, j’ai pu cartographier in vivo et in vitro une région pouvant correspondre au site de liaison de la protéine RFL22 sur l’ARNm ccmFN2.Mes résultats révèlent que quelques rares gènes RFL remplissent des fonctions essentielles chez les Arabidopsis. Contrairement aux autres gènes PPR, la conservation fonctionnelle des gènes RFL22 et RFL23 apparait toutefois limitée aux Brassicaceae. Des modifications particulières dans l’organisation ou l’expression des génomes mitochondriaux de cette famille de plantes pourraient être à l’origine du recrutement de gènes RFL à évolution rapide pour maintenir une expression appropriée de certains gènes mitochondriaux. / Mitochondria are the siege of cellular respiration and code a small number of essential genes whose expression is governed almost exclusively by nuclear-encoded proteins. The proteins PPR family (PentatricoPeptide Repeat) belong to these actors and intervene at all stages of RNAs expression in organelles, from transcription to translation. Interestingly, plants encode numerous PPR proteins (about 500 in the model specie Arabidopsis thaliana), and are therefore ideal models for understanding the role and function of these proteins. They correspond to very specific RNA binding proteins, characterized by the presence of tandem repeats of about 35 amino acids. Within the PPR family, a subgroup of genes called Restorer of Ferility Like (RFL) is opposed to other PPR because they undergo a diversifying, non-purifying selection, as is the case for classical PPR. Some RFL proteins described in other model species such as rice or radish, are known as fertility restorers, and inhibit the expression of mitochondrial genes inducing male sterility. The RFL family consists in 26 members in Arabidopsis thaliana.In order to better understand the functional diversity of RFL genes, our team has characterized all rfl mutants in Arabidopsis, and only two of them, affected in RFL22 and RFL23 genes display remarkable phenotypic alterations. During my thesis, I characterized RFL22 and RFL23 proteins to understand their role and molecular mode of action. The study of the mutants rfl22 and rfl23 showed that these genes are essential for the establishment of the respiratory chain. The mutant rfl22 no longer produces mature c-type cytochromes (which affects the activity of respiratory complexes III and IV), whereas the mutant rfl23 no longer accumulates complex I of the respiratory chain.After adjusting the ribosome profiling protocol to plant mitochondria, I discovered that RFL22 and RL23 proteins were essential for specific mitochondrial mRNAs translation : ccmFN2 mRNA encoding a subunit of heme lyase complex and nad4L transcript encoding a subunit of complex I. Furthermore, I was able to map a region in vivo and in vitro that could correspond to the binding site of the RFL22 protein on the ccmFN2 mRNA.My results show that a few rare RFL genes perform essential functions in Arabidopsis. By opposition to other PPR genes, the functional conservation of RFL22 and RFL23 genes appears limited to Brassicaceae. Specific modifications in organization or expression of the mitochondrial genomes of this family of plants could be at the origin of the recruitment of rapidly changing RFL genes to maintain proper expression of certain mitochondrial genes.
4

Structural characterization of proteinaceous RNase P from Arabidopsis thaliana / Etudes structurales d'une RNase P protéique d'Arabidopsis thaliana

Pinker, Franziska 15 September 2014 (has links)
La maturation des ARNt en 5' est réalisée par RNase P. C'est un ribozyme chez les bactéries, les fungi et les nuclei des mammifères et un enzyme protéique dans les plantes ou des organelles des mammifères qui s’appelle PRORP. Il y a trois PRORP dans A. thaliana. PRORP contiennent deux domaines : un domaine PPR qui reconnaît spécifiquement des séquences d'ARN et un domaine nucléase qui assure la coupure endonucléolytique 5' des précurseurs d’ARNt. Pendant ma thèse j'ai pu montré par des méthodes biophysiques et structurales comme SRCD et SAXS que PRORP1 et 2 sont composées en majorité des hélices alpha Elles ont un rayon de giration de 33 Å et contiennent deux domaines distincts avec et une dimension maximale de 110 Å. Pour le complex entre un substrat d'ARNt et PRORP une constante de dissociation de 1 uM a pu être confirmé par la microcalorimétrie, la thermophorèse et l'ultracentrifugation analytique. Ces analyses nous ont permis de construire un modèle PRORP et un substrat d'ARNt. / RNase P cleaves 5’ leaders of precursor tRNAs. RNase P is a ribozyme in bacteria, fungi and animal nuclei and a protein in animal organelles, plants and many other organism. There are three PRORPs in A. thaliana. MALS, SRCD and SAXS provided first structural information: 1) PRORPs are monomers in solution. 2) PRORP 1-2 have a high alpha-helical content. 3) PRORPs are composed of two distinct domains with a radius of gyration of 33 A. These results together with homology modelling enabled us to build a first model of PRORPs in complex with tRNA. Using three different methods, isothermal titration calorimetry, microscale thermophoresis and analytical ultracentrifugation, a binding constant of about 1 µM could be determined for the system PRORP2mDD and L5T0 tRNA. This helped us conducting a SAXS experiment taking into account the low resolution affinity and designed to provide the direct structural data of a complex of proteinaceous RNase P with a substrate tRNA.
5

Funktion und Evolution chloroplastidärer PPR-Proteine

Beick, Susanne 16 May 2011 (has links)
PPR-Proteine bilden die größte Familie von RNA-Bindeproteinen in Pflanzen und sie werden fast ausschließlich in die Mitochondrien oder Plastiden importiert, wo sie eine wesentliche Rolle im RNA-Metabolismus spielen (Lurin et al., 2004). Doch die Funktionsweise der Proteine ist noch weitgehend unbekannt. In dieser Arbeit wurde das plastidäre PPR-Protein PPR5 in Zea mays funktionell charakterisiert, dessen Ortholog in Arabidopsis thaliana essentiell für die Embryogenese ist (Cushing et al., 2005). Mittels PPR5-Immunopräzipitation und einer Analyse der kopräzipitierten RNA konnte in vivo eine spezifische Assoziation mit der ungespleißten tRNA-Glycin (UCC) nachgewiesen werden. Analysen von ppr5-Mais-Mutanten offenbarten einen Stabilitätsverlust dieser RNA. Es wurde gefolgert, dass PPR5 das Transkript vor einem endonukleolytischen Abbau schützt. Die weiteren Projekte der Arbeit widmeten sich der Evolution der Familie. Um Erkenntnisse zur Funktion und Spezifität nahe verwandter PPR-Proteine zu erhalten, wurden die drei nächsten Verwandten von PPR5 identifiziert und Mais-Mutanten isoliert. Weiterhin wurde PPR54 untersucht. Es konnte gezeigt werden, dass PPR54 in Mais – wie in Arabidopsis (Tillich, nicht publiziert) – für das Spleißen des ndhA-Introns benötigt wird. Damit wurden erstmalig orthologe PPR-Proteine in einer Mono- und einer Dikotylen funktionell analysiert. Die vorgelegten Analysen mündeten in drei allgemeingültigen Schlussfolgerungen zur Funktion der PPR-Proteine. 1) Plastidäre PPR-Proteine, die in Dikotylen wie Arabidopsis für die Embryogenese notwendig sind, üben eine Funktion in der plastidären Translation aus. 2) Die vorgeschlagene Funktionsweise von PPR5 erfordert nicht die Rekrutierung anderer, katalytisch aktiver Proteine, sondern ihr liegt ein passiver, auf der Bindung einer RNA beruhender Mechanismus zugrunde. 3) Die Funktion orthologer PPR-Proteine ist in Mono- und Dikotylen konserviert, wie am Beispiel von PPR54 experimentell nachgewiesen wurde. / PPR proteins are the largest family of RNA binding proteins in plants and the vast majority of them is localized to mitochondria or chloroplasts, where they are major players in the RNA metabolism of defined transcripts (Lurin et al., 2004). However, the mechanistic function of these proteins is still not clear. In this study, the plastid PPR protein PPR5, whose ortholog in Arabidopsis thaliana is embryo-essential (Cushing et al., 2005), was functionally characterized in Zea mays. By PPR5 immunoprecipitation and analyses of the coimmunoprecipitated RNA, a specific association to the unspliced tRNA glycine (UCC) was shown in vivo. The analysis of ppr5 maize mutants demonstrated a loss of stability of the tRNA precursor in mutants. It was concluded that the interaction with PPR5 protects the unspliced tRNA from endonucleolytic decay. In addition, close relatives of PPR5 were identified in maize (PPR2, PPR50, and PPR51) by phylogenetic means and maize mutants were isolated. A future characterization of four paralogous PPR proteins might answer whether closely related PPR proteins have similar functions or RNA targets. The analysis of PPR54 in maize demonstrated that PPR5 is needed for the splicing of the ndhA intron in maize as it is in Arabidopsis (Tillich, not published). Three important conclusions concerning the function of PPR proteins in general were drawn from the studies of chosen PPR proteins presented here. First, plastid PPR proteins that are essential in embryo development in eudicots like Arabidopsis should be necessary for plastid translation in most cases. Second, the characterization of PPR5 revealed a possibly ancient functional mechanism of PPR proteins which does not invoke the recruitment of additional catalytic factors but relies on the passive binding of RNA elements. Last, the conservation of function of orthologous PPR proteins in monocots and eudicots, which was shown in the case of PPR54, was demonstrated experimentally for the first time.

Page generated in 0.0552 seconds