• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 644
  • 410
  • 169
  • 59
  • 56
  • 42
  • 22
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 13
  • 12
  • Tagged with
  • 1695
  • 944
  • 169
  • 134
  • 117
  • 115
  • 104
  • 104
  • 99
  • 99
  • 95
  • 95
  • 85
  • 85
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

The mexCD-oprJ multidrug efflux operon in Pseudomonas aeruginosa: regulation by the NfxB-like novel regulator PA4596 and envelope stress

PURSSELL, ANDREW 20 August 2009 (has links)
Expression of the mexCD-oprJ multidrug efflux operon is enhanced by the presence of membrane damaging agents [e.g., the biocide chlorhexidine (Chx)] or mutations in the nfxB gene encoding a repressor of efflux gene expression, both dependent on the AlgU envelope stress response sigma factor. Details of mexCD-oprJ regulation are, however, lacking. In examining the mexCD-oprJ locus, a gene, PA4596, encoding a homologue of NfxB (61% identity) was identified downstream of oprJ, a location conserved in all sequenced Pseudomonas aeruginosa isolates and in Pseudomonas putida. Opposite to mexCD-oprJ, PA4596 expression was reduced by Chx exposure, as assessed using RT-PCR; although like mexCD-oprJ, this was AlgU-dependent (i.e., lost in a ΔalgU strain). Deletion of PA4596 had no impact on Chx resistance indicating that it is not required for Chx-inducible mexCD-oprJ expression/ MexCD-OprJ-dependent Chx resistance. In contrast, mexCD-oprJ expression and the attendant multidrug resistance of nfxB deletion mutants were compromised upon deletion of PA4596, indicating that PA4596 plays a positive role in mexCD-oprJ expression in such mutants. Consistent with this, PA4596 expression increased in nfxB deletion and missense mutants in parallel with mexCD-oprJ. Intriguingly, mexCD-oprJ expression and multidrug resistance were observed in a mutant lacking an nfxB mutation (demonstrating an NfxB-like phenotype) and in an nfxB missense mutant and these were not compromised upon deletion of PA4596. Thus, mexCD-oprJ hyperexpression can be both PA4596-dependent and -independent. A bacterial 2-hybrid assay revealed a PA4596-PA4596 interaction, consistent with the protein forming dimers as NfxB has been shown to do. Two-hybrid assays also demonstrated that NfxB and PA4596 interact. While the functional significance of this remains to be elucidated, it is consistent with their common role in regulating mexCD-oprJ expression and is suggestive of a complex and possibly novel regulatory mechanism. These data highlight the complexity of mexCD-oprJ regulation and the apparently multiple pathways to efflux gene expression, suggestive of multiple roles for this efflux system in P. aeruginosa independent of antimicrobial efflux. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2009-08-18 14:25:18.107
422

Regulation of the MexAB-OprM Multidrug Efflux System of Pseudomonas aeruginosa: Involvement of Pentachlorophenol and Plant Chemicals

STARR, LISA MICHELLE 10 September 2010 (has links)
Pseudomonas aeruginosa is a common soil organism as well as an opportunistic human pathogen. Treatment of P. aeruginosa infections is often complicated by innate resistance to a variety of antimicrobials mediated by multidrug efflux systems. The MexAB-OprM efflux system is constitutively expressed in wildtype strains and contributes to innate antimicrobial resistance, while hyperexpression of the system results in acquired high levels of resistance. MexAB-OprM is hyperexpressed in nalC mutants containing mutations in the gene encoding NalC, a repressor of a two-gene operon, PA3720-armR. armR encodes a protein modulator of MexR, a repressor of mexAB-oprM expression. Previous reports showed that genes encoding the MexAB-OprM efflux system are upregulated in response to pentachlorophenol (PCP), a phenolic compound that is a common environmental contaminant. Induction of mexAB-oprM and PA3720-armR by PCP was confirmed using RT-PCR, and MexAB-OprM was shown to be involved in PCP resistance. An electromobility shift assay (EMSA) showed that PCP interacts with NalC, interfering with its binding to the PA3720-armR promoter region and thereby promoting PA3720-armR expression. Nonetheless, the increase in ArmR did not drive mexAB-oprM expression suggesting that PCP induction of this efflux operon occurred via a different mechanism. A direct PCP-MexR interaction could not be demonstrated using an EMSA. PCP exposure did, however, reduce expression of nalD, encoding a second repressor of mexAB-oprM, which might explain the PCP-promoted increase in mexAB-oprM expression. PCP is unlikely to be the intended inducer(s)/substrate(s) for this system but probably resembles these. Several compounds related to PCP were tested for an interaction with NalC but all were negative in EMSAs. Plants produce a variety of phenolic compounds, which are often antimicrobial and, so, root extracts of various plants were tested for an ability to interact with NalC and interfere with promoter binding. Extracts from Boehmeria tricuspis, Uncaria tomentosa and Ixiolirion tataricum were shown to interact with NalC, suggesting that plant compounds may be the intended inducers/substrates for NalC/MexAB-OprM. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2010-09-10 10:35:16.271
423

Role of microbial adhesion in phenanthrene biodegradation by Pseudomonas fluorescens LP6a

Abbasnezhad, Hassan Unknown Date
No description available.
424

Bacterial adhesion to model meat surfaces

Piette, J.-P. Gabriel (Jean-Paul Gabriel) January 1991 (has links)
The adhesion of seven meat spoilage bacteria to model meat surfaces (thin fat and tendon slices) was studied in a specially designed flow chamber. In general, adhesion was not influenced by the physiological age of the cells and was not correlated with the cell surface characteristics (electrical charge, hydrophobicity) of the organisms. Also, adhesion data did not corroborate the predictions based on changes in the free energy of adhesion, calculated from contact angles and surface tension measurements. A more detailed study of the adhesion of Pseudomonas fluorescens to tendon was subsequently undertaken. Neither physiological activity nor the presence of flagella was found to be essential for adhesion. Selective chemical alterations of the cell surface pointed to no direct implication of carboxyl or amino groups in an adhesive bond with tendon. These groups may participate in adhesion, however, through electrostatic interactions as suggested from the variations of adhesion with ionic strength.
425

The role of sodium in the growth, respiration and membrane transport of Pseudomonas doudoroffii /

Wisse, Gesine Alida. January 1986 (has links)
No description available.
426

Chloramphenicol resistance in Pseudomonas aeruginosa

Irvin, Jean E. January 1983 (has links)
The characteristics and expression of laboratory derived chloramphenicol (CM) resistance in P. aeruginosa were examined. Resistant strains exhibiting single cell resistance of 1.5 to 2 mg/mL were readily isolated following one passage in CM at 150 to 1000 (mu)g/mL. Isogenic strains, selected on CM at 150 and 500 (mu)g/mL were chosen for detailed study. Resistance was not a consequence of drug detoxification or altered sensitivity of the target site. The resistant strains exhibited unusual phenotypic properties including pronounced variations in growth rate, CM susceptibility and cell morphology as a function of the composition of the growth medium. Growth in CM also resulted in significant alterations in amino acid transport and respiratory capacity, the extent of which varied with the strain, the growth medium and the concentration of CM. These drug and medium-dependent alterations were determined to reside in an increased and highly specific requirement for Ca('2+), Mg('2+), Mn('2+) or Sr('2+). Manipulation of the divalent cation concentration of a variety of growth media resulted in dramatic alterations in growth rate, resistance and amino acid transport. Ca('2+) was significantly more effective than the latter three ions. The expression of native and plasmid-mediated CM resistance was also modified by the external concentration of divalent cations. In view of the nature and specificity of the cation requirement, it was concluded that (1) divalent cation-mediated alterations of outer membrane permeability are fundamental to the expression of native and acquired CM resistance in P. aeruginosa; (2) laboratory-derived CM resistance involves envelope changes, such that interaction with divalent cations promotes more effective exclusion of CM. The latter conclusion is supported by other divalent cation-dependent alterations in envelope function in the resistant strains.
427

Effects of chloramphenicol on Pseudomonas aeruginosa

Léger, Jean-François January 1991 (has links)
The characteristics of the effects of chloramphenicol on Pseudomonas aeruginosa were examined. Resistant strains were easily isolated following a single passage in chloramphenicol at 150 $ mu$g/ml to 500 $ mu$g/ml. Drug detoxification or altered sensitivity of the target site could not be the mechanism of resistance. This resistance to chloramphenicol was correlated with the addition of an outer membrane protein with a molecular weight of 49 kDa and the loss of two outer membrane proteins, one with the molecular weight of 19 kDa and the other of about 10 kDa. The highly specific requirement of the resistant strains for Ca$ sp{2+}$, Mg$ sp{2+}$, Mn$ sp{2+}$ or Sr$ sp{2+}$ described by Irvin and Ingram (1982) was confirmed by the observation that the outer membrane of the resistant cells contained twice as much Mg$ sp{2+}$ cation as the sensitive cells. Many other experiments designed to observe the effects of chloramphenicol on the outer membrane of P. aeruginosa failed. It was concluded that the observations made in this study strongly suggested a "re-structuring" of the outer membrane of P. aeruginosa, rendering the resistant cells more impermeable to chloramphenicol.
428

Regulatory Mechanisms Underlying Biological Control Activity of Pseudomonas chlororaphis PA23.

Selin, Carrie Lynn January 2012 (has links)
Biological control is an intriguing alternative to the use of chemical pesticides as it represents a safer, more environmentally friendly approach to managing plant pathogens. Pseudomonas chlororaphis strain PA23 was isolated from soybean root tips and it was found to be an excellent antagonist of sclerotinia stem rot. Our studies have shown that pyrrolnitrin (PRN) is the key metabolite required for S. sclerotiorum inhibition, while phenazine (PHZ) is important for biofilm establishment. For this reason, research efforts were directed towards elucidating the mechanisms governing PA23-mediated antibiotic production. To determine how these compounds were regulated, QS-deficient strains and an rpoS mutant were generated. The QS-deficient strains no longer inhibited the fungal pathogen S. sclerotiorum in vitro and exhibited reduced PRN, PHZ and protease production. Analysis of transcriptional fusions revealed that RpoS has a positive and negative effect on phzI and phzR, respectively. In a reciprocal manner, RpoS is positively regulated by QS. Characterization of a phzRrpoS double mutant showed reduced antifungal activity as well as PRN and PHZ production, similar to the QS-deficient strains. Furthermore, phzR but not rpoS was able to complement the phzRrpoS double mutant for the aforementioned traits, indicating that the Phz QS system is a central regulator of PA23-mediated antagonism. GacS/GacA, PsrA, RpoS and the PhzI/PhzR QS are members of a complex regulatory hierarchy that influence secondary metabolite production in PA23. An additional system, termed Rsm, was identified, adding yet another layer of complexity to the regulatory network. The Rsm system in PA23 appears to be comprised of a single small non-coding regulatory RNA termed RsmZ, and two RNA binding proteins RsmA and RsmE. We discovered that the expression of rsmZ, rsmA and rsmE all require GacA. In addition, both PsrA and QS were shown to positively regulate rsmZ transcription. For rsmE, GacA may indirectly regulate expression through PsrA, RpoS and QS, as all three regulators control rsmE transcription. Furthermore, we believe that the positive effects of PsrA and QS on rsmE transcription are likely mediated through RpoS as only RpoS show direct activation of rsmE in an E. coli background.
429

Induction and production of specific extracellular lipases from selected microorganisms

Ngom, Marie Odile. January 2000 (has links)
Induction of extracellular lipases from Pseudomonas fragi CRDA 037 and Geotrichum candidum was used to increase lipase production in a shorter period of time. Induction was performed using edibles oils such as olive oil, canola oil, fish oil and butter fat. Fermentation trials of the microorganisms in the selected media were done in order to optimize the production of lipases. Optimal lipase activity was obtained in the presence of butter fat (1%, v/v) for P. fragi which was cultivated at 15°C during 48 h, and fish oil (0.75%, v/v) for G. candidum incubated at 27°C for 56 h. The induced lipase extracts of P. fragi and G. candidum obtained after these fermentation trials were purified by 3.7 and 5.9-fold respectively using ultrafiltration, while the non-induced fractions were purified by 2.3 and 5.1-fold, respectively. Activities were evaluated using p-nitrophenyl esters such as p-nitrophenyl laurate and p-nitrophenyl palmitate. (Abstract shortened by UMI.)
430

Characterizing Stress-Induced Outer Membrane Vesicle Production in Pseudomonas aeruginosa

MacDonald, Ian Alexander January 2013 (has links)
<p>As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt to changes and survive stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved a myriad of virulence factors including the production of an exopolysaccharide capsule, as well as secretion of degradative proteases and lipases that also function as defense mechanisms. Outer membrane vesicles (OMVs) acts as a secretion system to disseminate virulence factors and function as a general bacterial stress response to remove accumulated periplasmic waste. Despite the growing insights of the field into the potential functions of OMVs, the mechanism for formation remains to be fully elucidated. The three proposed mechanisms for OMV formation in P. aeruginosa are mediated by the Pseudomonas quinolone signal PQS, the AlgU envelope stress response pathway, and the periplasmic chaperone MucD. This report investigates how P. aeruginosa responds to sublethal physiological stressors with regards to OMV production levels and whether the proposed mechanisms for OMV formation are required for stress-induced OMV formation. We concluded that exposure to cell wall directed stressors increased OMV production and activity of the sigma factor that controls MucD expression, AlgU. AlgU was shown to be sufficient to induced OMV production upon overexpression; however, stress-induced OMV production was not dependent on activation of AlgU as vesiculation could be induced in strains lacking AlgU. Furthermore, MucD levels were not inversely proportional to OMV production under acute stress, and the ability to produce PQS was not required for OMV production. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that hydrogen peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. We also demonstrated that the ability for P. aeruginosa to sense oxidative stress via OxyR, was important for hydrogen peroxide-induced OMV production, by a yet to be determined method. Together these results demonstrate that current proposed mechanisms for OMV formation do not universally apply under all stress conditions, and that additional mechanisms for OMV formation are still to be identified and fully elucidated during acute stress in P. aeruginosa.</p> / Dissertation

Page generated in 0.0429 seconds