• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 644
  • 410
  • 169
  • 59
  • 56
  • 42
  • 22
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 13
  • 12
  • Tagged with
  • 1695
  • 944
  • 169
  • 134
  • 117
  • 115
  • 104
  • 104
  • 99
  • 99
  • 95
  • 95
  • 85
  • 85
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Characterization of bacteria degrading pentachlorophenol

Tasi, Chi-Tang 21 July 2002 (has links)
Pentachlorophenol (PCP) is a chloride-containing aromatic compound which is mostly used for preserving wood and leather, but still one can easily detect this compound present in the waste water generated by various industries such as petrifaction, oil-refining, and etc. PCP, due to its chemical property of being stable and highly toxic, would cause severe and irreparable environmental pollution once exposed to open air. This study is intended to explore the feasibility of dealing the problem of PCP with biodegradation. The examination results showed that, except for absorption, the suspension of contaminated soil (aerobic incubation), nonetheless, could effectively degrade PCP during a period of 90 days without the aid of any extra carbon source. (0.62 mg/L/day). The degradation rate was further greatly improved by adding sodium acetate, molasses, and sludge cake (sodium acetate added: 4.15 mg/L/day; molasses added: 1.05 mg/L/day; sludge cake added:0.83 mg /L/day). None of four experimental groups of aerobic sludge, anaerobic sludge, contaminated soil (anaerobic incubation), and Fe3+reaction could degrade PCP after 135 days, 174 days, 250 days, and 124 days, respectively, regardless of whether any sources of carbon were added or not. A bacterium which used PCP as the sole carbon source was isolated from the contaminated soil. After 16s rDNA sequence analysis, it had 98% degree of similarity to Pseudomonas mendocina and was designated as Pseudomonas mendocina NSYSU. The PCP (40 mg/L) degradation rate of Pseudomonas mendocina NSYSU was 9.33 mg/L/day, and the degradation rate would slow down as PCP concentration increased. At a PCP concentration of 320 mg/L, PCP degradation was completely inhibited, although an active population of Pseudomonas mendocina NSYSU was still present in these cultures. The study also indicated that the addition of various carbon sources such as sodium acetate and glucose did not facilitate the degradation of PCP with the degradation rate of 8.11 mg/L/day for sodium acetate, and that of 7.55 mg/L/day for glucose. Analysis from examining several environmental factors showed that the optimal condition for PCP degradation is that of 30¢J, pH6, and in the presence of oxygen. The end products of PCP degradation were detected by GC-MS. After 6 days of incubation, PCP was gradually disappeared and the metabolic intermediate product, acetic acid was detected. The chloride ion concentration also increased by 21.8 mg/L, which is approximately equal to the original total chloride content in PCP (66% of chloride content). In conclusion, PCP could be effectively and completely degraded by Pseudomonas mendocina NSYSU.
402

Isolation and identification of fuel-oil-degrading bacteria

Yang, Wan-yu 08 July 2008 (has links)
The purpose of this study is to isolate and identify the crude oil-degrading bacteria from oil polluted soil. Their physiological characteristics and oil-degrading capability were also studied. Eight polluted soil samples were taken from the Kaohsiung Refingery Factory of the Chinese Petroleum Corporation (CPC). The microbiota of the Kaohsiung refinery soil sample P37-2 (#6) could degrade crude oil from 2000 ppm to 572 ppm in 10 days. Bacteria in polluted soil samples were selected and isolated by minimal medium with 2000 ppm crude oil as the sole carbon source. Biochemical test, PCR-DGGE, and 16S DNA sequencing were used to identify and characterize the bacteria isolates. Three strains were identified as Pseudomonas aeruginosa (NSYSU-1-1), Acinetobacter sp. (NSYSU-4-1), and Pseudomonas sp. (NSYSU-7-1). These three strains and microbiota #6 were tested for their capability of degrading the total petroleum hydrocarbons (TPH). We found that microbiota #6 performed better than the other three bacterial strains in degrading the crude oil. In this study, we also found temperature was not the major factor of influcing the biodegradation; however, high oxygen concentration and providing nitrogen soure couled improve the biodegradation rate. Although both NSYSU-1-1 and NSYSU-7-1 are Pseudomonas strains, they performed different on degrading the oil. All strains tested could degrade the crude oil to a concentration below 1000 ppm to meet the government emission standard. The bacterial strains and techniques developed in this study provide a choice for future bioremediation of crude oil pollution.
403

Biodegradation Of 1-Naphthoic Acid

Phale, Prashant S 04 1900 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are compounds containing carbon and hydrogen atoms of fused benzene rings in linear, angular or cluster arrangements. These compounds have a large (negative) resonance energy, resulting in a thermodynamically stable structures. PAHs may also contain alkyl- and nitro-substituent groups. The complexity in these molecules can be generated by substituting the aromatic carbon atom with nitrogen, oxygen or sulfur, giving rise to heterocyclic PAHs.
404

Incidence du Pseudomonas aeruginosa multi-résistant sur le devenir après transplantation pulmonaire chez des patients atteints de mucoviscidose à propos de 99 cas nantais /

Vincent, Anne Danner-Boucher, Isabelle. January 2008 (has links)
Reproduction de : Thèse d'exercice : Médecine. Pneumologie : Nantes : 2008. / Bibliogr.
405

Untersuchungen zur Regulation des pqq-Operons und anderer Komponenten des Ethanol-oxidierenden Systems von Pseudomonas aeruginosa

Gliese, Nicole January 2009 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2009
406

Isolation of bacteriocins from Vibrio Spp. and Pseudomonas Spp. attached to aquatic particulate material /

Bost, Amanda Lynn. January 2004 (has links)
Thesis (M.S.)--University of North Carolina at Wilmington, 2004. / Includes bibliographical references (leaves : [25]-27).
407

Secondary metabolites from Pseudomonas fluorescens and Microcystis aerugionosa : isolation, structure elucidation, and quantification /

Blue, Laura Elizabeth. January 2003 (has links)
Thesis (M.S.)--University of North Carolina at Wilmington, 2003. / Includes bibliographical references (leaves : 63-66).
408

Quantitative assessment of localized growth rates and gene expression patterns in Pseudomonas aeruginosa biofilms

Pérez-Osorio, Ailyn Cecilia. January 2009 (has links) (PDF)
Thesis (PhD)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Michael Franklin. Includes bibliographical references.
409

Characterization of bioactive secondary metabolites from Pseudomonas aeruginosa and Prorocentrum species /

Williams, Jennifer S. January 2003 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2003. / Includes bibliographical references (leaves : 85-91).
410

Influence of Escherichia coli and Pseudomonas aeruginosa on the growth behaviour and alpha-toxigenicity of Clostridium welchii in continuous culture /

Chou, Grace. January 1970 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1970. / Mimeographed.

Page generated in 0.0249 seconds