• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

AN ITERATIVE PROCEDURE WITH IMPROVED INITIAL GUESS TO EVALUATE THE SEVEN PARAMETERS OF THE TWO DIODE MODEL FOR A PHOTOVOLTAIC MODULE

Ziyue Liu (11826122) 20 December 2021 (has links)
<p>Climate change and global warming indicate that reducing the use of traditional fossil energy and developing new renewable energy should be an essential matter. Solar energy has emerged as one of the renewable energy sources for electricity generation since the late 20<sup>th</sup> century. One way to utilize solar energy is to collect and convert it into electricity by solar photovoltaic devices through the photovoltaic effect. Due to the high cost of photovoltaic modules, it is essential to optimize the performance of photovoltaic modules by using accurate equivalent circuit models. Among the available equivalent circuit models, the single diode model is relatively simple and computationally efficient but would be inaccurate if the recombination loss were substantial. The double diode model includes more parameters to represent the recombination loss, so the accuracy improves, but at the cost of adding more parameters to the model. The primary challenge of applying the double diode model is obtaining the optimum value for the seven model parameters with a reasonable computational effort. </p> <p>The current study investigates the effect of each term in the double diode model. It then proposes a method to obtain an initial estimate for each of the seven model parameters from data provided by the manufacturer. Using these initial estimated parameters as inputs, the Newton-Raphson method is applied to improve parameter estimates and prediction accuracy. The performance of two PV modules from different manufacturers is then modeled using the initial parameter estimates and the Newton-Raphson updated parameters. Both are compared to the manufacturers’ data. </p>
12

A New perspective in rural electrification in DC voltage: an experience in the State of Piauà / Uma Nova perspectiva de eletrificaÃÃo rural em corrente contÃnua: uma experiÃncia no Estado do PiauÃ

Emanoel Augusto Paulo Soares 21 November 2011 (has links)
O presente trabalho apresenta os estudos, especificaÃÃes, instalaÃÃo e operaÃÃo de um sistema fotovoltaico com a finalidade de fornecer energia elÃtrica a uma escola pÃblica, localizada em uma Ãrea isolada do sul do Estado do PiauÃ. O sistema foi proposto e seu protÃtipo constituÃdo por painel fotovoltaico, banco de baterias, carregador do banco de bateria e conversor CC/CC elevador, que alimenta as cargas em corrente contÃnua, projetado para uma autonomia de trÃs dias, mesmo em condiÃÃes mÃnimas de radiaÃÃo solar. A energia solar capturada pelo painel solar à armazenada em um banco de baterias estacionÃrias do tipo chumbo-Ãcido. O carregador de baterias trabalhando no ponto de mÃxima potÃncia (MPP) do painel à responsÃvel pelo carregamento deste banco. A carga à suprida pelo conversor CC/CC elevador de alto ganho (24 Vdc para 311 Vdc). O projeto completo do sistema à apresentado ao longo deste trabalho, bem como sÃo apresentados os principais resultados experimentais do protÃtipo mostrado e instalado em campo. / This work presents the studies, specifications, installation and operation of a photovoltaic system in order to provide electricity to a public school located in an isolated area of the southern state of PiauÃ. The system was proposed and its prototype constituted by photovoltaic panel, battery bank, charger from the battery bank and converter DC / DC elevator, that feed the chargers in direct current designed for a range of three days, even in minimum solar radiation. The solar energy captured by solar panel is stored in a stationary batteries, lead acid type. The battery charger working at maximum power point (MPP) of the panel is responsible for load bank. The load is supplied by the DC / DC converter lift high gain (24 Vdc to 311 Vdc). The complete design system and its control are presented throughout this work, as well as presented the main results of the experimental prototype shown and installed in the field.
13

Quantification of Solar Photovoltaic Encapsulant Browning Level Using Image Processing Tool

January 2016 (has links)
abstract: In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There are about 86 different types of defects found in the PV modules installed in various climates and most of them can be visually observed. However, a quantitative determination of impact or risk of each of identified defect on performance is challenging. Thus, it is utmost important to quantify the risk for each of the visual defects without any human subjectivity. The best way to quantify the risk of each defect is to perform current-voltage measurements of the defective modules installed in the plant but it requires disruption of plant operation, expensive measuring equipment and intensive human resources. One of the most riskiest and dominant visual defects is encapsulant browning which affects the PV module performance in the form of current degradation. The present study deals with developing an automated image processing tool which can address the issues of human subjectivity on browning level impacting performance. The image processing tool developed in this work can be directly used to quantify the impact of browning on performance without intrusively disconnecting the modules from the plant. In this work, the quantified browning level impact on performance has also been experimentally validated through a correlation study using short-circuit current and reflectance/transmittance measurements of browned PV modules retrieved from aged plants/systems installed in diverse climatic conditions. The primary goal of the image processing tool developed in this work is to determine the performance impact of encapsulant browning without interrupting the plant operation for I-V measurements. The use of image processing tool provides a single numerical value, called browning index (BI), which can accurately quantify browning levels on modules and also correlate with the performance and reflectance/transmittance parameters of the modules. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
14

Temperature Coefficients and Thermal Uniformity Mapping of PV Modules and Plants

January 2016 (has links)
abstract: The operating temperature of photovoltaic (PV) modules is affected by external factors such as irradiance, wind speed and ambient temperature as well as internal factors like material properties and design properties. These factors can make a difference in the operating temperatures between cells within a module and between modules within a plant. This is a three-part thesis. Part 1 investigates the behavior of temperature distribution of PV cells within a module through outdoor temperature monitoring under various operating conditions (Pmax, Voc and Isc) and examines deviation in the temperature coefficient values pertaining to this temperature variation. ANOVA, a statistical tool, was used to study the influence of various factors on temperature variation. This study also investigated the thermal non-uniformity affecting I-V parameters and performance of four different PV technologies (crystalline silicon, CdTe, CIGS, a-Si). Two new approaches (black-colored frame and aluminum tape on back-sheet) were implemented in addition to the two previously-used approaches (thermally insulating the frame, and frame and back sheet) to study temperature uniformity improvements within c-Si PV modules on a fixed latitude-tilt array. This thesis concludes that frame thermal insulation and black frame help reducing thermal gradients and next best viable option to improve temperature uniformity measurements is by using average of four thermocouples as per IEC 61853-2 standard. Part 2 analyzes the temperature data for two power plants (fixed-tilt and one-axis) to study the temperature variation across the cells in a module and across the modules in a power plant. The module placed in the center of one-axis power plant had higher temperature, whereas in fixed-tilt power plant, the module in north-west direction had higher temperatures. Higher average operating temperatures were observed in one-axis tracking as compared to the fixed-tilt PV power plant, thereby expected to lowering their lifetime. Part 3 focuses on determination of a thermal model coefficients, using parameters similar to Uc and Uv thermal loss factors used in PVsyst, for modules of four different PV technologies experiencing hot-desert climate conditions by statistically correlating a year-long monitored data. Thermal models help to effectively quantity factors influencing module temperatures to estimate performance and energy models. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
15

Substring Current-Voltage Measurement of PV Strings Using a Non-Contact I-V Curve Tracer

January 2020 (has links)
abstract: In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in the string; and, iii) current-voltage (I-V) curve tracing of all the modules in the string. In the first and second approaches, the EL images are used to detect the modules with broken cells, and the IR images are used to detect the modules with hotspot cells, respectively. These two methods may identify the modules with defective cells only semi-qualitatively, but not accurately and quantitatively. The third method, I-V curve tracing, is a quantitative method to identify the underperforming modules in a string, but it is an extremely time consuming, labor-intensive, and highly ambient conditions dependent method. Since the I-V curves of individual modules in a string are obtained by disconnecting them individually at different irradiance levels, module operating temperatures, angle of incidences (AOI) and air-masses/spectra, all these measured curves are required to be translated to a single reporting condition (SRC) of a single irradiance, single temperature, single AOI and single spectrum. These translations are not only time consuming but are also prone to inaccuracy due to inherent issues in the translation models. Therefore, the current challenges in using the traditional I-V tracers are related to: i) obtaining I-V curves simultaneously of all the modules and substrings in a string at a single irradiance, operating temperature, irradiance spectrum and angle of incidence due to changing weather parameters and sun positions during the measurements, ii) safety of field personnel when disconnecting and reconnecting of cables in high voltage systems (especially field aged connectors), and iii) enormous time and hardship for the test personnel in harsh outdoor climatic conditions. In this thesis work, a non-contact I-V (NCIV) curve tracing tool has been integrated and implemented to address the above mentioned three challenges of the traditional I-V tracers. This work compares I-V curves obtained using a traditional I-V curve tracer with the I-V curves obtained using a NCIV curve tracer for the string, substring and individual modules of crystalline silicon (c-Si) and cadmium telluride (CdTe) technologies. The NCIV curve tracer equipment used in this study was integrated using three commercially available components: non-contact voltmeters (NCV) with voltage probes to measure the voltages of substrings/modules in a string, a hall sensor to measure the string current and a DAS (data acquisition system) for simultaneous collection of the voltage data obtained from the NCVs and the current data obtained from the hall sensor. This study demonstrates the concept and accuracy of the NCIV curve tracer by comparing the I-V curves obtained using a traditional capacitor-based tracer and the NCIV curve tracer in a three-module string of c-Si modules and of CdTe modules under natural sunlight with uniform light conditions on all the modules in the string and with partially shading one or more of the modules in the string to simulate and quantitatively detect the underperforming module(s) in a string. / Dissertation/Thesis / Masters Thesis Engineering 2020
16

Untersuchungen zum Einfluss von Additiven auf die Langzeitstabilität von Polyethylenvinylacetatfolie bei Einsatz als Einbettmaterial in Photovoltaik-Modulen

Jentsch, Annegret 30 October 2015 (has links)
Polyethylenvinylacetat (EVA) ist das in der kristallinen Silizium Photovoltaik am häufigsten eingesetzte Einbettmaterial. Aufgrund der Applikation von Solarmodulen unterliegt das Polymer Alterungsmechanismen, die zu Änderungen oder Verlust wichtiger Eigenschaften führen können. Folge sind typische Fehlerbilder wie Delamination oder Yellowing, die zu Leistungsverlusten oder Modulausfällen führen können. Ziel dieser Arbeit war es, den Einfluss von Umweltparametern (Temperatur, Feuchte, UV-Strahlung) und Stabilisatoren auf die Alterung von EVA-Folie zu untersuchen und damit einen Beitrag zur Identifikation der zugrundeliegenden Fehlermechanismen zu liefern. Dazu wurden sowohl Folien mit definierter und variierender Additivierung als auch kommerzielle Folien künstlichen Bewitterungstests unterzogen und die Änderungen verschiedener Eigenschaften analysiert. Dazu zählt die Haftung an der Grenzfläche EVA-Glas, das Transmissionsverhalten und die Farbänderung der Folie. Darüber hinaus wurden alterungsbedinge Änderungen an der chemischen Struktur von EVA und den Stabilisatoren mittels FTIR-Spektroskopie und GC/MS-Messungen erfasst. Bei den untersuchten Additiven handelte es sich um ein organisches Peroxid (Vernetzer), einen Haftvermittler auf Silanbasis, einen UV-Absorber aus der Gruppe der Hydroxybenzophenone, ein Arylphosphit als Antioxidant und einen bi-funktionellen Stabilisator, das sogenannte HALS (hindered amine light stabilizer). Im Rahmen der Arbeit ist es gelungen Ursache-Wirkungs-Zusammenhänge zwischen der Folienadditivierung und dem Auftreten verschiedener Fehlerbilder zu identifizieren. Darüber hinaus war es möglich eine Folienzusammensetzung zu definieren, die die bestmögliche Stabilität beim Einsatz von EVA als Einbettmaterial bieten sollte.

Page generated in 0.0288 seconds