1 |
Numerical Analysis of Passive Force on Skewed Bridge AbutmentsGuo, Zifan 01 December 2015 (has links)
Accounting for seismic forces and thermal expansion in bridge design requires an accurate passive force-deflection relationship for the abutment wall. Current design codes make no allowance for skew effects on passive force; however, large scale field tests indicate that there is a substantial reduction in peak passive force as skew angle increases. A reduction in passive force also reduces the transverse shear resistance on the abutment. The purpose of this study is to validate three-dimensional model using PLAXIS 3D, against large scale test results performed at Brigham Young University and to develop a set of calibrated finite element models. The model set could be used to evaluate the variation in passive resistance with skew angle for various abutment geometries and backfill types. Initially, the finite element model was calibrated using the results from a suite of field tests where the backfill material consisted of dense compacted sand. Results were available for skew angles of 0, 15, 30 and 45°. Numerical model results were compared with measured passive force-deflection curves, ground surface heave and displacement contours, longitudinal displacements, and failure plane geometry. Soil properties were defined by laboratory testing and in-situ direct shear tests on the compacted fill. Soil properties and mesh geometries were primarily calibrated based on the zero skew test results. The results were particularly sensitive to the soil friction angle, wall friction angle, angle of dilatancy, soil stiffness and lateral restraint of the abutment backwall movement. Reasonable agreement between measured and computed response was obtained in all cases confirming numerically that passive force decreases as skew angle increases Additional analyses were then performed for abutments with different soil boundaries.
|
2 |
Passive Force on Skewed Bridge Abutments with Reinforced Concrete Wingwalls Based on Large-Scale TestsSmith, Kyle Mark 01 July 2014 (has links) (PDF)
Skewed bridges have exhibited poorer performance during lateral earthquake loading when compared to non-skewed bridges (Apirakvorapinit et al. 2012; Elnashai et al. 2010). Results from small-scale laboratory tests by Rollins and Jessee (2012) and numerical modeling by Shamsabadi et al. (2006) suggest that skewed bridge abutments may provide only 35% of the non-skewed peak passive resistance when a bridge is skewed 45°. This reduction in peak passive force is of particular importance as 40% of the 600,000 bridges in the United States are skewed (Nichols 2012). Passive force-deflection results based on large-scale testing for this study largely confirm the significant reduction in peak passive resistance for abutments with longitudinal reinforced concrete wingwalls. Large-scale lateral load tests were performed on a non-skewed and 45° skewed abutment with densely compacted sand backfill. The 45° skewed abutment experienced a 54% reduction in peak passive resistance compared to the non-skewed abutment. The peak passive force for the 45° skewed abutment was estimated to occur at 5.0% of the backwall height compared to 2.2% of the backwall height for the non-skewed abutment. The 45° skewed abutment displayed evidence of rotation, primarily pushing the obtuse side of the abutment into the backfill, significantly more than the non-skewed abutment as it was loaded into the backfill. The structural and geotechnical response of the wingwalls was also monitored during large-scale testing. The wingwall on the obtuse side of the 45° skewed abutment experienced nearly 6 times the amount of horizontal soil pressure and 7 times the amount of bending moment compared to the non-skewed abutment. Pressure and bending moment distributions are provided along the height of the wingwall and indicate that the maximum moment occurs approximately 20 in (50.8 cm) below the top of the wingwall. A comparison of passive force per unit width suggests that MSE wall abutments provide 60% more passive resistance per unit width compared to reinforced concrete wingwall and unconfined abutment geometries at zero skew. These findings suggest that changes should be made to current codes and practices to properly account for skew angle in bridge design.
|
3 |
Passive Force on Skewed Abutments with Mechanically Stabilized Earth (MSE) Wingwalls Based on Large-Scale TestsFranke, Bryan William 18 March 2013 (has links) (PDF)
Passive force-deflection behavior for densely compacted backfills must be considered in bridge design to ensure adequate resistance to both seismic and thermally induced forces. Current codes and practices do not distinguish between skewed and non-skewed bridge abutment geometries; however, in recent years, numerical models and small-scale, plane-strain laboratory tests have suggested a significant reduction in passive force for skewed bridge abutments. Also, various case studies have suggested higher soil stresses might be experienced on the acute side of the skew angle. For these reasons, three large-scale tests were performed with abutment skew angles of 0, 15 and 30 degrees using an existing pile cap [11-ft (3.35-m) wide by 15-ft (4.57-m) long by 5.5-ft (1.68-m) high] and densely compacted sand backfill confined by MSE wingwalls. These tests showed a significant reduction in passive force (approximately 38% as a result of the 15 degree skew angle and 51% as a result of the 30° skew angle. The maximum passive force was achieved at a deflection of approximately 5% of the backwall height; however, a substantial loss in the rate of strength gain was observed at a deflection of approximately 3% of the backwall height for the 15° and 30° skew tests. Additionally, the soil stiffness appears to be largely unaffected by skew angle for small displacements. These results correlate very well with data available from numerical modeling and small-scale lab tests. Maximum vertical backfill displacement and maximum soil pressure measured normal to the skewed backwall face were located on the acute side of the skew for the 15° and 30° skew test. This observation appears to be consistent with observations made in various case studies for skewed bridge abutments. Also, the maximum outward displacement of the MSE wingwalls was located on the obtuse side of the skew. These findings suggest that changes should be made to current codes and practices to properly account for skew angle in bridge design.
|
4 |
Evaluation of Passive Force Behavior for Bridge Abutments Using Large-Scale Tests with Various Backfill GeometriesSmith, Jaycee Cornwall 12 June 2014 (has links) (PDF)
Bridge abutments are designed to withstand lateral pressures from thermal expansion and seismic forces. Current design curves have been seen to dangerously over- and under-estimate the peak passive resistance and corresponding deflection of abutment backfills. Similar studies on passive pressure have shown that passive resistance changes with different types of constructed backfills. The effects of changing the length to width ratio, or including MSE wingwalls determine passive force-deflection relationships. The purpose of this study is to determine the effects of the wall heights and of the MSE support on passive pressure and backfill failure, and to compare the field results with various predictive methods. To compare the effects of backfill geometries, three large-scale tests with dense compact sand were performed with abutment backfill heights of 3 ft (0.91 m), 5.5 ft (1.68 m), and 5.5 ft (1.68 m) confined with MSE wingwalls. Using an existing pile cap 11 ft (3.35 m) wide and 5.5 ft (1.68 m) high, width to height ratios for the abutment backfills were 3.7 for the 3ft test, and 2.0 for the 5.5ft and MSE tests. The failure surface for the unconfined backfills exhibited a 3D geometry with failure surfaces extending beyond the edge of the cap, increasing the "effective width", and producing a failure "bulb". In contrast, the constraint provided by the MSE wingwalls produced a more 2D failure geometry. The "effective width" of the failure surface increased as the width to height ratio decreased. In terms of total passive force, the unconfined 5.5ft wall provided about 6% more resistance than the 5.5ft MSE wall. However, in terms of passive force/width the MSE wall provided about 70% more resistance than the unconfined wall, which is more consistent with a plane strain, or 2D, failure geometry. In comparison with predicted forces, the MSE curve never seemed to fit, while the 3ft and 5.5ft curves were better represented with different methods. Even with optimizing between both the unconfined curves, the predicted Log Spiral peak passive forces were most accurate, within 12% of the measured peak resistances. The components of passive force between the unconfined tests suggest the passive force is influenced more by frictional resistance and less by the cohesion as the height of the backwall increases.
|
Page generated in 0.0236 seconds