• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 340
  • 147
  • 82
  • 60
  • 45
  • 13
  • 10
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 900
  • 177
  • 141
  • 124
  • 116
  • 115
  • 91
  • 91
  • 87
  • 79
  • 78
  • 71
  • 59
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

A study of pyrene dimerization in a jet stirred reactor

Cardenas Alvarez, Andres 03 1900 (has links)
Soot formation mechanisms have been a target of intense research for decades. The various stages in the soot formation mechanism have been accepted and recognized, nevertheless, the nucleation stage, which corresponds to the transition from gas phase polycyclic aromatic hydrocarbons (PAH) to condensed particles, is controversial. Pyrene dimerization is considered by many models to be the first step in soot nucleation. In this work, a jet-stirred reactor (JSR) in the temperature range of 700 – 1200 K was used to perform pyrene pyrolysis and to study the various dimerization Nascent particles were chemically analyzed using Fourier-transform ion cyclotron resonance high resolution mass spectrometry (FT-ICR MS) with a laser desorption ionization (LDI) source. Simulations were realized based on a simple kinetic model using CHEMKIN-PRO, which addressed three different dimerization pathways: 1) physical dimerization of two pyrene molecules (P-DIM), 2) physical dimerization between a pyrene molecule and a pyrenyl radical (PR-DIM), and/or 3) chemical dimerization between two pyrenyl radicals (C-DIM). The detected species presented 202 and 402 Da masses in the mass spectra with different intensities. At higher temperatures, the formation rate was enhanced due to the sensibility of particle formation to the reaction temperature. The first temperature regime was identified at 700 – 900 K, where the detected species contained only pyrene molecules, stacked by Van der Waals forces (P-DIM). In the 900–1100 K range, the formation of pyrenyl radicals was considered, and the production of PR-DIM was favored. In the higher temperature range (1100–1200 K), the greater species' mass were located and related to the dimerization of two pyrenyl radicals (C-DIM). The temperature increase was reflected in the production of higher concentrations of the pyrenyl radical, resulting in the dominance of the chemical dimerization pathway at 1200 K. The use of different initial concentrations of pyrene in the simulations did not significantly affect the outcome. Results of the experiment were reflected in the simulations, based on the model used, revealing the tendency of the three dimerization pathways, the decreased survival rate of physically-formed dimers, and the enhanced production of chemically-linked dimers at high temperatures.
322

A Density Functional Theory Study of the Pyrolysis Mechanisms of Indole

Zhou, Xuefeng, Liu, Ruifeng 02 April 1999 (has links)
Becke's three-parameter hybrid density functional method in conjunction with Lee-Yang-Parr's correlation functional (B3LYP) was used to investigate the pyrolysis mechanisms of indole yielding benzyl cyanide and o- and m- tolunitriles. All equilibrium and transition state structures of the proposed reaction channels were fully optimized by B3LYP using the 6-31G** basis set. Single point energies were evaluated by B3LYP with the 6-311 + + G(2d,2p) basis set. Two hydrogen migration tautomers of indole, seemingly playing no important roles in the pyrolysis due to destruction of aromaticity of the benzene ring, were predicted to be easily accessible under the experimental conditions and may be important intermediates in the reactions. Two other transition states suggested to play important roles in the experimental study were not found and may not exist. Instead stepwise processes via hydrogen migration tautomers arriving at the same products are shown likely to be responsible for the observed products. IR spectral features of three hydrogen-migration tautomers are predicted to help future experimental identification.
323

Conventional and Catalytic Pyrolysis of Pinyon Juniper Biomass

Yathavan, Bhuvanesh Kumar 01 December 2013 (has links)
Pinyon and juniper are invasive woody species which has occupied more than 47 million acres of land in Western United States. Pinyon juniper woodlands domination decreases the herbaceous vegetation, increase bare lands which in turn increases soil erosion and nutrition loss. Thus, The US Bureau of Land Management (BLM) has focused on harvesting these woody species to make room for herbaceous vegetation. The major application of harvested pinyon-juniper (PJ) is low value firewood. Thus, there is a need to develop new high value products from this woody biomass to reduce the cost of harvesting. In this study pyrolysis was carried out to investigate the feasibility of converting pinyon juniper biomass to value added products. The first part of the study was focused on biomass characterization, and effect of biomass type on product yields. The second part focuses on optimization of process parameters on product yields. The third part focuses on catalytic pyrolysis for improving the quality of bio-oil. In this study it has been shown that pinyon juniper biomass could be effectively used as biomass in fast pyrolysis and red mud, an industrial waste could be used as catalyst in catalytic pyrolysis to improve the quality of the bio-oil.
324

Production of Phenol-formaldehyde Adhesives from Catalytic Pyrolysis Oil

Akude, Angela M. 01 May 2017 (has links)
Phenol-formaldehyde adhesives are important adhesives known to have superior water resistance capacity and high mechanical strength when utilized in wood-based applications. Due to unsustainability and environmental issues associated with the use of fossil fuels, there is an urgent need to look for alternative raw materials, which are renewable in nature. Pinyon-juniper biomass has been found to be a suitable replacement for petroleum-based phenol because it is renewable, abundant, and readily available. In this thesis, bio-oil produced from the pyrolysis of pinyon-juniper biomass using red mud alumina catalyst was used to produce wood adhesives. The characterization of pinyon-juniper bio-oil showed the presence of phenolics, aromatic hydrocarbons, aliphatic hydrocarbons, carboxylic acids, ethers, ketones, aldehydes, and aliphatic alcohols. Resol synthesis parameters such as formaldehyde-to-phenol molar ratio (1.8 and 2), catalyst loading (0.25, 0.63, and 1.25 g of NaOH), reaction time (60 minutes), and reaction temperature (95°C), were investigated in the production of pinyon-juniper adhesives. Based on the results obtained, the extent of phenol substitution with pinyon-juniper bio-oil was dependent on the amount catalyst used during the synthesis process. The maximum phenol substitution of 80% was achieved using a catalyst loading of 1.25 g of NaOH while the minimum phenol substitution of 50% was obtained at a catalyst loading of 0.25 g of NaOH. Dry shear strength (8.99 to 12.73 MPa) and wet shear strength of (5.16 to 7.36 MPa) for both pure phenol-formaldehyde resols and pinyon-juniper substituted resols were comparable and exceeded the minimum requirement of 0.66 MPa for plywood. Finally, the chemical structure of pure phenol-formaldehyde resols showed the presence of more phenolic OH groups compared to pinyon-juniper substituted resols. This observation was corroborated by the higher concentration of free phenol in pure phenol-formaldehyde adhesives compared to pinyon-juniper substituted resols.
325

Design Of A Fluidized Bed Reactor For Biomass Pyrolysis

Bamido, Alaba O. 30 October 2018 (has links)
No description available.
326

Processing of Carbon–Silicon Carbide Hybrid Fibers

Al-ajrash, Saja M. Nabat January 2019 (has links)
No description available.
327

Study of the Performance of Peat Moss Pyrolysis

Wen, Yuming January 2019 (has links)
Peat moss, also called sphagnum, has become a big problem in many countries such as China and Sweden due to its high green-house gas emission from chemical and biological degradation. In this work, the performance of peat moss pyrolysis has been studied, to investigate the potential of application of peat moss pyrolysis on fuel and chemical production. Thermalgravimetric analysis (TGA), differential thermal analysis (DTA), and pyrolysis experiments in a bench-scale reactor have been conducted. Kinetic parameters were calculated based on the results of TG and DTG by Kissinger-Akahira-Sunose (KAS) method and Coats-Redfern method. 450, 500, 550, 600 °C were chosen as the pyrolytic peak temperatures and four phases of products (char, aqueous phase, tar, and gas) were collected. It was found that the peat moss pyrolysis from room temperature to 900 °C could be classified as a six stages reaction. Stage 1 to stage 5 were estimated to be the results of the removal or decomposition of moisture content, hemicellulose, cellulose, lignin, and CaCO3, respectively. The results of activation energies calculated by Coats-Redfern method revealed that, when the heating rate different from 10, 15, and 20 °C/min: stage 3 had the activation energy of 276389, 262587, and 239049 J/mol; stage 4 had the activation energy of 252851, 248918, and 307427 J/mol; stage 5 had the activation energy of 1108268, 814402, and 857437 J/mol, respectively. When the peak pyrolytic temperature raised from 450 to 600 °C: the production of char would decrease; the 500 °C one had the highest production of tar; the aqueous phase produced had the highest TAN value at 500 °C. / Torvmossa, även kallad sphagnum, har blivit ett stort problem i många länder som Kina och Sverige på grund av dess stora utsläpp av växthusgaser från kemisk och biologisk nedbrytning. I detta arbete har torvmossans egenskaper vid pyrolys studerats för att undersöka dess potential att användas inom bränsle- och kemisk produktion.Termogravimetrisk analys (TGA), differentiell termisk analys (DTG) och pyrolysförsök i en bench-scale reaktor har genomförts. Kinetiska parametrar beräknades baserat på resultaten av TGA och DTG med Kissinger-Akahira-Sunose (KAS) metoden och Coats-Redfern metoden. 450, 500, 550, 600 °C valdes som temperaturer vid pyrolys och fyra olika produkter (kol, vattenfas, tjära och gas) uppsamlades. Det visade sig att torvmosspyrolysen från rumstemperatur till 900 °C kunde klassificeras som en reaktion på sex steg. Steg 1 till steg 5 uppskattades vara resultaten av avlägsnande eller sönderdelning av fuktinnehåll, hemicellulosa, cellulosa, lignin respektive CaCO3. Resultaten av aktiveringsenergier beräknade med CoatsRedfern-metoden och visade att: när uppvärmningshastigheten skiljer sig från 10, 15 och 20 °C/min; steg 3 hade aktiveringsenergin 276389, 262587 och 239049 J/mol; steg 4 hade aktiveringsenergin 252851, 248918 och 307427 J/mol; steg 5 hade aktiveringsenergin 1108268, 814402 respektive 857437 J/mol. När den högsta pyrolytiska temperaturen höjdes från 450 till 600 °C: minskade produktionen av kol; 500 °C hade den högsta produktionen av tjära; den producerade vattenfasen hade det högsta TAN-värdet vid 500 °C.
328

STRUCTURAL CHARACTERIZATION OF COMPLEX POLYMER SYSTEMS BY DEGRADATION / MASS SPECTROMETRY

Thomya, Panthida January 2006 (has links)
No description available.
329

<em>Ab Initio</em> Studies of High Temperature Pyrolysis Mechanisms in Heterocyclic Nitrogen-Containing Compounds.

Tittle, James Alfred 01 August 2000 (has links) (PDF)
The decomposition mechanisms of various coal constituents undergoing pyrolysis are of great concern in environmental circles (especially those coal constituents containing nitrogen). Most methods of burning coal that are efficient involve doing so at high temperatures. This invariably results in a large portion of non-combusting coal being heated to high temperatures also causing pyrolysis of the original coal constituents. The end result of such pyrolysis is the production of a number of noxious gaseous products. If we are to design methods of reducing the amount of toxins that are produced from the industrial use of coal, it is necessary to understand the pyrolysis process mechanistically. Due to the great number of coal constituents, a reasonable approach to such a mechanistic study is to use a simpler model. Pyridine makes an excellent starting model upon which to build. Our study focuses on interpretation of proposed reaction channels from experimental work on pyridine, quinoline and isoquinoline shock-tube decomposition in light of new ab initio energy calculations using Gaussian 98. The pathways thus determined support the proposed pyrolysis mechanisms and agree with experimental evidence obtained from independent groups of researchers performing shock tube pyrolysis.
330

Potentialen hos hydrokol från avloppsslam som jordförbättringsmedel / The potential of hydrochar from sewage sludge as a soil improver

Akhlaghi, Lina January 2022 (has links)
Margretelunds reningsverk i Åkersberga står såsom andra svenska avloppsreningsverk inför nya utmaningar i samband med anpassningen till ett mer hållbart och cirkulärt samhälle. För att bidra till en bra lokal miljö med få transporter och minimerad lukt, uppnå en hög grad av fosforåtervinning, samt reducera organiska och icke-organiska föreningar i slammet ska Roslagsvattenb i samarbete med IVL Svenska Miljöinstitutet utvärdera C-Greens OxyPower HTC-teknik. HTC-tekniken är hydrotermisk karbonisering (HTC) kombinerat med våtoxidation av HTC- vatten. Det våta slammet tas om hand på reningsverket och omvandlas till en fast kolanrikad produkt så kallad HTC-biokol eller hydrokol. HTC-processen innebär uppvärmning av det våta slammet (180–260°C) under högt tryck och syrefria förhållande med vatten närvarande. Hydrokolet som bildas kan uppgraderas till bränsle, jordförbättringsmedel eller aktiverat kol.  I detta arbete studerades potentialen att använda hydrokol som jordförbättringsmedel genom att undersöka biokolets fysikaliska- och kemiska egenskaper. Hydrokol jämfördes med biokol från pyrolys som också är en förkolningsprocess av biomassa vid höga temperaturer (300–650 °C) under syrefria förhållande dock utan närvaro av vatten.  Baserat på resultatet från publicerade studier, har hydrokol potentialen att ersätta eller komplettera mineralgödsel. Hydrokol förbättrar markens bördighet och produktivitet genom att t.ex. öka den totala växttillväxten, förbättrar mineraliseringen av näringsämnen och tillgängligheten av fosfor, samt ger en långsam frisättning av näringsämnen. / Margretelund's treatment plant in Åkersberga, like other Swedish sewage treatment plants, faces new challenges in connection with the adaptation to a more sustainable and circular society. In order to contribute to a good local environment with few transports and minimized odors, achieve a high degree of phosphorus recovery, and reduce organic and inorganic pollutants in the sludge, Roslagsvatten, in collaboration with the IVL Swedish Environmental Institute, will evaluate C-Green's OxyPower HTC-technology.  The HTC-technology is hydrothermal carbonization (HTC) combined with wet oxidation of HTC-water. The wet sludge is taken care of at the treatment plant and converted into a fast carbon-enriched product called HTC-biochar or hydrochar. The HTC-process involves heating the wet sludge (180–260°C) under high pressure and oxygen-free conditions with water present. The hydrochar that is formed can be upgraded to fuel, soil improver or activated carbon.  In this work, the potential of using hydrochar as a soil improver is studied by examining the biochar's physical and chemical properties. Hydrochar was compared with biochar from pyrolysis, which is also a charring process of biomass at high temperatures (300–650 °C) under oxygen-free conditions but without the presence of water.  Based on the results of published studies, hydrochar has the potential to replace or supplement mineral fertilizers. Hydrochar improves soil fertility and productivity by e.g. increase overall plant growth, improve nutrient mineralization and phosphorus availability, and provide a slow release of nutrients.

Page generated in 0.4147 seconds