Spelling suggestions: "subject:"cracking model"" "subject:"bracking model""
1 |
Anwendungsorientierte Mischungsentwicklung und Ökobilanz eines zementreduzierten ÖkobetonsHilgenfeld, Jonathan 02 February 2021 (has links)
Die vorliegende Thesis befasst sich mit der Mischungsentwicklung eines zementreduzierten Ökobetons für die Verwendung in einem ökologisch verbesserten Deckensystem. Dafür wurden mithilfe eines in Microsoft Excel aufgestellten physikalischen Analysemodells – dem Compaction-Interaction Packing Model nach FENNIS – Rezepturen entwickelt, die durch eine optimierte Packungsdichte einen geringeren Zementleimbedarf aufweisen. Dabei gelang es, Zement teilweise durch feine Kalksteinmehle zu ersetzen und eine CO2-sparende Mischung mit einem reduzierten Zementgehalt von 150 kg je Kubikmeter Beton herzustellen, welche die an sie gestellten Anforderungen erfüllt – u. a. bezogen auf Festigkeit (Festigkeitsklasse C 20/25), Verarbeitbarkeit (Konsistenzklasse C3) und Alkalität (pH-Wert > 10). Diese Eigenschaften wurden experimentell geprüft. Zwar wurden bei der auf empirischen Daten beruhenden Prognose von Festigkeit und Konsistenz im Modell nur teilweise realitätsnahe Werte ermittelt, das Modell stellte sich insgesamt jedoch als zielführendes Instrument bei der Mischungsentwicklung von Ökobetonen heraus.:1 Einleitung
2 Verringerung der Umwelteinwirkungen bei der Betonherstellung
3 Methodik der Mischungsentwicklung zementreduzierter Ökobetone
4 Packungsdichteberechnung mit dem Compaction-Interaction Packing Model
nach FENNIS
5 Mischungsentwicklung eines Ökobetons im Rahmen des Forschungsvorhabens
GRO-COCE
6 Herstellung der Auswahlmischungen und experimentelle Ermittlung von
Betoneigenschaften
7 Eingrenzung einer Zielmischung
8 Diskussion der Ergebnisse
9 Zusammenfassung und Ausblick / The present thesis deals with the mix development of a cement-reduced eco-concrete for the use in an ecologically improved ceiling system. For this purpose, a physical analysis model built in Microsoft Excel – the Compaction-Interaction Packing Model according to FENNIS – was used to develop recipes which, due to an optimised packing density, have a low cement paste requirement. It was possible to partially replace cement with fine limestone powders and to produce a CO2-saving mixture with a reduced cement content of 150 kg per cubic metre of concrete, which meets the requirements placed on it – among other things with regard to strength (strength class C 20/25), workability (consistency class C3) and alkalinity (pH-value > 10). These properties were tested experimentally. Although only partially realistic values were determined in the model for the prediction of strength and consistency based on empirical data, the model turned out to be a suitable instrument for mix developments of eco-concretes.:1 Einleitung
2 Verringerung der Umwelteinwirkungen bei der Betonherstellung
3 Methodik der Mischungsentwicklung zementreduzierter Ökobetone
4 Packungsdichteberechnung mit dem Compaction-Interaction Packing Model
nach FENNIS
5 Mischungsentwicklung eines Ökobetons im Rahmen des Forschungsvorhabens
GRO-COCE
6 Herstellung der Auswahlmischungen und experimentelle Ermittlung von
Betoneigenschaften
7 Eingrenzung einer Zielmischung
8 Diskussion der Ergebnisse
9 Zusammenfassung und Ausblick
|
2 |
Concrete Made with Fine Recycled Concrete Aggregate (FRCA): A Feasibility StudyDe Freitas Macedo, Hian 13 September 2019 (has links)
In the process of crushing concrete waste, significant amounts of fine by-products, the so called fine recycled concrete aggregates (FRCA), are generated and excluded from potential use. Limited research has thoroughly investigated the performance of concrete mixes with FRCA, very likely due to the complexity in analysing non-negligible amounts of adhered residual cement paste (RCP). Although some studies have proposed promising sustainable mix-design procedures accounting for the different microstructure when using coarse recycled concrete aggregates (CRCA), no similar approach exists for FRCA concrete. In this work, two promising procedures for mix-designing eco-efficient concrete with 100% FRCA are proposed accounting for the presence of RCP to reduce cement content in new mixtures. First, built on top of the existing procedure for CRCA mix-design, modifications to the Equivalent Volume (EV) method were introduced toconsider full replacement of fine natural sand by FRCA. Second, based on the concept of continuous Particle Packing Models (PPM), an optimized procedure was proposed to allow maximum packing density of FRCA mix linked to a given level of measured RCP content. Results verified the feasibility of producing eco-efficient concrete mixes with 100% FRCA, emphasizing the PPM mixes to report superior rheological and mechanical performance along with suitable durability-related properties. Yet, results also indicated the influence of simple or multistage crushed FRCA on the overall performance of mixes.
|
3 |
Capacity of vehicular Ad-hoc NETwork / Capacité des réseaux Ad-hoc de véhiculesGiang, Anh Tuan 18 April 2014 (has links)
Au cours des dernières années, les communications inter-véhicule (IVC) sont devenues un domaine de recherche intensif, en particulier dans le cadre des systèmes de transport intelligents. Il suppose que la totalité ou une partie des véhicules est équipé de dispositifs radio permettant la communication entre eux. La norme IEEE 802.11p (normalisé pour la communication des véhicules) devrait être la technologie de facto pour ces communications. En utilisant son mode ad hoc, cette technologie radio permet aux véhicules d'étendre la portée de leur communication en formant un réseau multi-saut sans fil Ad - hoc, également appelé Vehicle ad hoc NETwork (VANET). Cette thèse aborde un problème fondamental des VANET : la capacité du réseau. Deux modèles théoriques simples ont été proposés dans cette thèse pour calculer cette capacité: un « packing problem » (la traduction française nous est inconnue) et un modèle Markovien. Ils offrent des formules simples et fermées sur le nombre maximum d'émetteurs simultanés, et sur la distribution de la distance entre eux. Une borne supérieure sur cette capacité a été proposée. De plus, le modèle Markovien a permis de proposer une formule analytique sur la distribution spatiale des émetteurs. Ces quantités nous permettent, entre autres, de paramétrer le mécanisme d’accès au medium du 802.11p, comme par exemple le seuil du CCA (Clear Channel Assessment), amenant à une optimisation de la capacité du réseau. Afin de valider les différentes contributions théoriques de cette thèse, les résultats des modèles analytiques ont été comparés à des simulations effectuées avec le simulateur de réseau NS-3. Les paramètres de simulations ont été estimés à partir d’expérimentations réelles. De plus, différentes distributions de trafic (trafic de véhicules) ont été considéré afin d’évaluer leur impact sur la capacité du réseau. L’une des applications de cette thèse est le dimensionnement des applications de sécurité routière vis-à-vis de la consommation des ressources réseau. Dans ce cadre, nous nous sommes intéressés aux reconstructions de cartes. Il faut comprendre ICI LA reconstitution de l’environnement d’un véhicule (perception map). Ces applications utilisent des informations provenant de capteurs locaux et distants afin d’offrir un système d’aide à la conduite (conduite autonome, alerte sur des collisions, annonce de situations accidentogènes, etc.). Ces applications nécessitent une bande passante élevée. Notre étude théorique a montré que cette bande passante ne sera sans doute pas disponible en pratique dans les réseaux IEEE 802.11p. Par conséquent, UN algorithme adaptatif de contrôle de puissance a été proposé et optimisé pour cette application particulière. Nous avons montré que notre algorithme, par le biais d'un modèle analytique et d'un grand nombre de simulations que la capacité du réseau est augmentée de manière significative. / In recent years, Inter Vehicle Communication (IVC) has become an intensive research area, as part of Intelligent Transportation Systems. It supposes that all, or a subset of the vehicles is equipped with radio devices, enabling communication between them. IEEE 802.11p (standardized for vehicular communication) shows a great deal of promise. By using ad hoc mode, this radio technology allows vehicles to extend their scopes of communication and thus forming a Multi-hop wireless Ad-hoc NETwork, also called Vehicular Ad-hoc NETwork (VANET). This thesis addresses a fundamental problem of VANET: the network capacity. Two simple theoretical models to estimate this capacity have been proposed: a packing model and a Markovian point process model. They offer simple and closed formulae on the maximum number of simultaneous transmitters, and on the distribution of the distance between them. An accurate upper bound on the maximum capacity had been derived. An analytical formula on distribution of the transmitters had been presented. This distribution allows us to optimize Clear Channel Assessment (CCA) parameters that leads to an optimization of the network capacity.In order to validate the approach of this thesis, results from the analytical models are compared to simulations performed with the network simulator NS-3. Simulation parameters was estimated from real experimentation. Impact of different traffic distributions (traffic of vehicles) on the network capacity is also studied. This thesis also focuses on extended perception map applications, which use information from local and distant sensors to offer driving assistance (autonomous driving, collision warning, etc.). Extended perception requires a high bandwidth that might not be available in practice in classical IEEE 802.11p ad hoc networks. Therefore, this thesis proposes an adaptive power control algorithm optimized for this particular application. It shows through an analytical model and a large set of simulations that the network capacity is then significantly increased.
|
4 |
Capacity of vehicular Ad-hoc NETworkGiang, Anh Tuan 18 April 2014 (has links) (PDF)
In recent years, Inter Vehicle Communication (IVC) has become an intensive research area, as part of Intelligent Transportation Systems. It supposes that all, or a subset of the vehicles is equipped with radio devices, enabling communication between them. IEEE 802.11p (standardized for vehicular communication) shows a great deal of promise. By using ad hoc mode, this radio technology allows vehicles to extend their scopes of communication and thus forming a Multi-hop wireless Ad-hoc NETwork, also called Vehicular Ad-hoc NETwork (VANET). This thesis addresses a fundamental problem of VANET: the network capacity. Two simple theoretical models to estimate this capacity have been proposed: a packing model and a Markovian point process model. They offer simple and closed formulae on the maximum number of simultaneous transmitters, and on the distribution of the distance between them. An accurate upper bound on the maximum capacity had been derived. An analytical formula on distribution of the transmitters had been presented. This distribution allows us to optimize Clear Channel Assessment (CCA) parameters that leads to an optimization of the network capacity.In order to validate the approach of this thesis, results from the analytical models are compared to simulations performed with the network simulator NS-3. Simulation parameters was estimated from real experimentation. Impact of different traffic distributions (traffic of vehicles) on the network capacity is also studied. This thesis also focuses on extended perception map applications, which use information from local and distant sensors to offer driving assistance (autonomous driving, collision warning, etc.). Extended perception requires a high bandwidth that might not be available in practice in classical IEEE 802.11p ad hoc networks. Therefore, this thesis proposes an adaptive power control algorithm optimized for this particular application. It shows through an analytical model and a large set of simulations that the network capacity is then significantly increased.
|
5 |
Etude de la compacité optimale des mélanges granulaires binaires : classe granulaire dominante, effet de paroi, effet de desserrement / Study of the optimal solid fraction of binary granular mixtures : dominant granular class, wall effect, loosening effectRoquier, Gérard 15 February 2016 (has links)
La compacité des matériaux granulaires est une grandeur qui intéresse un grand nombre de secteurs, notamment les bétons hydrauliques. Lorsque les fractions granulaires ne possèdent pas des rapports de tailles infinis, deux interactions géométriques se développent : l’effet de paroi et l’effet de desserrement. La première peut se décrire ainsi : une grosse particule isolée constitue un « intrus » contre lequel viennent se ranger les petites particules, créant un supplément de vides à l’interface. La seconde se produit lorsque les petits grains sont insuffisamment fins pour se glisser entre les gros. Nous analysons comment elles sont prises en compte dans un certain nombre de modèles d’empilement en nous fixant finalement sur celui de de Larrard et al. : le modèle d’empilement compressible (MEC), l’un des plus efficaces. Dans celui-ci, les effets de paroi et de desserrement sont quantifiés par l’intermédiaire de deux coefficients dont les expressions sont obtenues par lissage de données expérimentales en fonction du rapport des diamètres fins/gros. Cependant, il n’existe aucune théorie pleinement satisfaisante permettant de les obtenir. Cette thèse vise à combler ce chaînon manquant. Nous avons conduit notre étude dans le cadre des empilements ordonnés et compacts de particules afin d’être en adéquation avec les hypothèses de constitution du MEC qui propose, comme préalable à l’obtention de la compacité réelle, la détermination d’une compacité virtuelle définie comme la compacité maximale susceptible d’être atteinte si l’on pouvait déposer, un à un, chaque grain à son emplacement idéal. Cette façon de procéder permet la création de cellules élémentaires juxtaposées. Dans ce cadre, l’interaction exercée par une espèce granulaire sur une autre de taille différente est menée à partir d’une étude localisée autour d’une particule « intruse » de la classe dominée, entourée de particules de la classe dominante. La simulation numérique apporte une confirmation de la validité du modèle. En plus de fournir des coefficients d’effets de paroi et de desserrement très proches de ceux prédits théoriquement, elle a permis l’étude d’empilements désordonnés de compacité maximale pour des billes bidispersées sans frottement dont les rapports de tailles valent 0,2 et 0,4. Le concept de « pressions partielles », qui tient compte à la fois des aspects géométrique et mécanique, a permis d’affiner la notion de classe dominante et de mieux appréhender la constitution du squelette porteur de l’édifice granulaire. En plus des zones constituées par les « fins dominants » et par les « gros dominants », il existe une zone mixte que nous avons dénommée « zone de synergie du squelette porteur » où les « pressions partielles » fines-grosses sont les plus importantes. En tenant compte de la nouvelle théorie développée pour les interactions géométriques, le modèle d’empilement compressible (MEC) subit une évolution et devient le MEC 4-paramètres, qui sont : les coefficients d’effet de paroi et d’effet de desserrement, le rapport de tailles de caverne critique et l’indice de compaction du mélange. Ce dernier ayant subi un nouvel étalonnage, le MEC 4-paramètres montre son efficacité quant à la prédiction de compacités sur mélanges binaires à partir de l’analyse de 780 résultats obtenus sur différents types de matériaux. Enfin, un modèle visant à prédire la viscosité d’une suspension concentrée de particules sphériques multidimensionnelles suspendues dans un fluide visqueux est présenté. Compatible avec la relation d’Einstein, il fait appel au concept de changement d’échelle de Farris et à une loi de viscosité de type Krieger-Dougherty. Lorsque la fraction volumique de solide atteint sa valeur critique, la suspension devient empilement et le mélange atteint la compacité du squelette solide déterminée par le MEC 4-paramètres / Packing density of granular materials is a quantity which interests many sectors, in particular hydraulic concrete. When two monodimensional grain classes have no very different sizes, two geometrical interactions develop : the wall effect and the loosening effect. The first one express the perturbation of the packing of the small grains at the interface between large and small grains. The second one occurs when small grains are not enough fine to insert into small cavities created by the touching larger grains. We analyze how they are taken into account in existing packing models. We select finally the compressible packing model (CPM) of de Larrard et al., one of the most effective. In this one, wall effect and loosening effect are quantified by two coefficients. They can, of course, be calculated from experimental results on binary mixtures, as a function of fine/coarse diameter ratios. However, there is no satisfactory theory allowing to calculate them. This doctoral thesis is done to fill this missing link. Ordered and very packed piles of particles are used as a reference frame to be in adequation with the CPM assumptions which require, before the calculation of the real packing density, the determination of a virtual packing density. The latter is defined as the maximum packing density attainable if each particle could be positioned in its ideal location. This approach allows the creation of elementary juxtaposed cells. In that context, the effect of a smaller grain (loosening effect) or a larger grain (wall effect) on the packed class is based on the study of a foreign sphere surrounded by dominant class neighbours. The numerical simulation confirms the validity of the model. In addition to predict wall effect and loosening effect coefficients close to those determined theoretically, numerical simulation was used to predict the solid fraction of maximally dense disordered packings of bidisperse spherical frictionless particles with 0,2 and 0,4 size ratios. The « partial pressures » concept, that includes both geometrical and mechanical aspects, allows to complete and improve the notion of dominant class and to better understand the build-up of the granular skeleton. In addition with « small grains packed » and « large grains packed » zones, the numerical simulation has highlighted a joint zone, called « synergism zone of the granular skeleton » where « partial pressures » fine-large particles are the most important. With this new theory developed for geometrical interactions, the compressible packing model (CPM) is evolving to the new 4-parameter CPM which are : the wall effect coefficient, the loosening effect coefficient, the critical cavity size ratio and the compaction index of the mixing, which requires a new recalibration. The 4-parameter CPM demonstrates its efficiency to predict the packing density of binary mixtures from the analysis of 780 results obtained on different types of materials. Finally, a model intended to predict the viscosity of a multimodal concentrated suspension with spherical particles suspended in a viscous fluid is presented. We resort to the iterative approach advocated by Farris and to a power-law relation (Krieger-Dougherty type) for the relative viscosity, compatible with the Einstein relation appropriate for a dilute suspension. When the solid volume fraction reaches its critical value, the suspension is jammed and the mixture reaches the packing density of the solid skeleton calculated with the 4-parameter CPM
|
6 |
Microstructural optimization of Solid Oxide Cells : a coupled stochastic geometrical and electrochemical modeling approach applied to LSCF-CGO electrode / Optimisation microstructurale des cellules à oxydes solides : approche numérique couplant modélisation géométrique et électrochimique appliquée à l'électrode LSCF-CGOMoussaoui, Hamza 29 April 2019 (has links)
Ce travail porte sur la compréhension de l’impact de la microstructure sur les performances des Cellules à Oxyde Solide (SOC), avec une illustration sur l’électrode à oxygène en LSCF-CGO. Une approche couplant de la modélisation géométrique et électrochimique a été adoptée pour cet effet. Le modèle des champs aléatoires plurigaussiens et un autre basé sur des empilements de sphères ont été développés et adaptés pour les microstructures des SOCs. Ces modèles 3D de géométrie stochastique ont été ensuite validés sur différentes électrodes reconstruites par nano-holotomographie aux rayons X au synchrotron ou par tomographie avec un microscope électronique à balayage couplé à une sonde ionique focalisée. Ensuite, des corrélations semi-analytiques ont été proposées et validées sur une large base de microstructures synthétiques. Ces relations permettent de relier les paramètres ‘primaires’ de l’électrode (la composition, la porosité et les diamètres des phases) aux paramètres qui pilotent les réactions électrochimiques (la densité de points triples, les surfaces spécifiques interphases) et sont particulièrement pertinents pour les équipes de mise-en-forme des électrodes qui ont plus de contrôle sur ce premier ensemble de paramètres. Concernant la partie portant sur l’électrochimie, des tests sur une cellule symétrique en LSCF-CGO ont permis de valider un modèle déjà développé au sein du laboratoire, et qui permet de simuler la réponse électrochimique d’une électrode à oxygène à partir des données thermodynamiques et de microstructure. Finalement, le couplage des deux modèles validés a permis d’étudier l’impact de la composition des électrodes, leur porosité ou encore taille des grains sur leurs performances. Ces résultats pourront guider les équipes de mise-en-forme des électrodes vers des électrodes plus optimisées. / This work aims at better understanding the impact of Solid Oxide Cells (SOC) microstructure on their performance, with an illustration on an LSCF-CGO electrode. A coupled 3D stochastic geometrical and electrochemical modeling approach has been adopted. In this frame, a plurigaussian random field model and an in-house sphere packing algorithm have been adapted to simulate the microstructure of SOCs. The geometrical models have been validated on different electrodes reconstructed by synchrotron X-ray nano-holotomography or focused ion-beam tomography. Afterwards, semi-analytical microstructural correlations have been proposed and validated on a large dataset of representative synthetic microstructures. These relationships allow establishing the link between the electrode ‘basic’ parameters (composition, porosity and grain size), to the ‘key’ electrochemical parameters (Triple Phase Boundary length density and Specific surface areas), and are particularly useful for cell manufacturers who can easily control the first set of parameters. Concerning the electrochemical part, a reference symmetrical cell made of LSCF-CGO has been tested in a three-electrode setup. This enabled the validation of an oxygen electrode model that links the electrode morphological parameters to its polarization resistance, taking into account the thermodynamic data. Finally, the coupling of the validated models has enabled the investigation of the impact of electrode composition, porosity and grain size on the cell electrochemical performance, and thus providing useful insights to cell manufacturers.
|
7 |
Optimised mix composition and structural behaviour of Ultra-High-Performance Fibre Reinforced ConcreteWeyers, Megan January 2020 (has links)
The overall objective of this study was to develop an optimised Ultra-High-Performance Concrete (UHPC) matrix based on the modified Andreasen and Andersen optimum particle packing model by using available South African materials. The focus of this study was to determine the optimum combined fibre and superplasticiser content for UHPC by using a response surface design.
The UHPC was appropriately designed, produced and tested. Various changes in mechanical properties resulting from different combinations of steel fibre and superplasticiser contents was investigated. The flowability, density and mechanical properties of the designed UHPC were measured and analysed. Both the fibre and superplasticiser content play a significant role in the flowability of the fresh concrete. The addition of fibres significantly improved the strength of the concrete. The results show that the superplasticiser content can be increased if a more workable mix is required without decreasing the strength significantly. The statistical analysis of the response surface methodology confirms that the designed models can be used to navigate the design space defined by the Central Composite Design. The optimum combined fibre and superplasticiser content depend on the required mechanical properties and cost. Using the modified Andreasen and Andersen particle packing model and surface response design methodology, it is possible to efficiently produce a dense Ultra-High-Performance Fibre Reinforced Concrete (UHPFRC) with a relatively low binder amount, low fibre content and good workability.
The effect of heat curing on the mechanical properties was investigated. It was concluded that heat curing is not recommended when considering the long-term strength development. The estimated strength development of concrete obtained by using the fib Model Code 2010 (2013) does not incorporate the detrimental effect of high curing temperatures on long-term strength and therefore overestimate the long-term strengths. The strength estimates for both early and long-term ages can be improved by considering this effect in the strength development functions obtained from fib Model Code 2010 (2013).
The effect of specimen size on the compressive and flexural tensile strength of UHPFRC members were established. It was found that the specimen size has a significant effect on the measured cube compressive strength. Smaller beam specimens showed higher ductility compared to those of the larger beam specimens. The crack width decreased as the beam’s depth decreased. A lower variability was experienced in the beams with limited depth (< 45 mm). Further testing is required to determine whether a span-to-depth ratio of 10 would yield optimum results.
The utilisation of by-products, such as undensified silica fume and fly ash, as cement replacement materials makes UHPFRC sustainable, leading to a reduced life-cycle cost. The calculated Embodied Energy per unit strength (EE/unit strength) and Embodied Carbon per unit strength (EC/unit strength) values for the UHPFRC mixture yield lower values compared to that of the 30 MPa concrete mixture, indicating that UHPFRC can be used to reduce the environmental footprint of the concrete industry.
The inverse analysis method used was successful in providing an improved simplified stress-strain response for the UHPFRC. The analysis provided valuable information into the stress-strain, load-deflection and moment-curvature responses of the UHPFRC. Standard material test results were used to theoretically calculate moment-curvature responses and were then compared to the experimental results obtained.
The study demonstrated that it is possible to efficiently produce a dense and workable UHPFRC with relatively low binder amount and low fibre content. This can result in more cost-effective UHPFRC, thus improving the practical application thereof. / Dissertation (MEng)--University of Pretoria, 2020. / Civil Engineering / MEng (Structural engineering) / Unrestricted
|
Page generated in 0.0821 seconds