Spelling suggestions: "subject:"pairwise error probability"" "subject:"fairwise error probability""
1 |
Cooperative Diversity for Inter-Vehicular CommunicationsHussain, Muhammad Jawwad 01 May 2008 (has links)
Recent technological advances and pervasiveness of wireless communication devices have offered novel and promising solutions to the road safety problem and on-the-go entertainment. One such solution is the Inter-Vehicular Communications (IVC) where vehicles cooperate in receiving and delivering the messages to each other, establishing a decentralized communication system.
The communication between vehicles can be made more effective and reliable at the physical layer by using the concept of space-time coding (STC). STC demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degree of freedom offered by the spatial dimension of the wireless. However, the use of multiple antenna at the receiver is not feasible because of the size and power limitations. Cooperative diversity, which is also known as user cooperation is ideal to overcome these limitations by introducing a new concept of using the antenna of neighboring node. This technique exploits the broadcast nature of wireless transmissions and creates a virtual (distributed) antenna array through cooperating nodes to realize spatial diversity advantage.
Although there has been a growing literature on cooperative diversity, the current literature is mainly limited to Rayleigh fading channel model which typically assumes a wireless communication scenario with a stationary base station antenna above roof-top level and a mobile station at street level. In this thesis, we investigate cooperative diversity for inter-vehicular communication based on cascaded Rayleigh fading. This channel model provides a realistic description of inter-vehicular channel where two or more independent Rayleigh fading processes are assumed to be generated by independent groups of scatters around the two mobile terminals. We investigate the performance of amplify-and-forward relaying for an inter-vehicular cooperative scheme assisted by either a road-side access point or another vehicle which acts as a relay. Our diversity analysis reveals that the cooperative scheme is able to extract the full distributed spatial diversity. We further formulate a power allocation problem for the considered scheme to optimize the power allocated to broadcasting and relaying phases. Performance gains up to 3 dB are obtained through optimum power allocation depending on the relay location.
|
2 |
Cooperative Diversity for Inter-Vehicular CommunicationsHussain, Muhammad Jawwad 01 May 2008 (has links)
Recent technological advances and pervasiveness of wireless communication devices have offered novel and promising solutions to the road safety problem and on-the-go entertainment. One such solution is the Inter-Vehicular Communications (IVC) where vehicles cooperate in receiving and delivering the messages to each other, establishing a decentralized communication system.
The communication between vehicles can be made more effective and reliable at the physical layer by using the concept of space-time coding (STC). STC demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degree of freedom offered by the spatial dimension of the wireless. However, the use of multiple antenna at the receiver is not feasible because of the size and power limitations. Cooperative diversity, which is also known as user cooperation is ideal to overcome these limitations by introducing a new concept of using the antenna of neighboring node. This technique exploits the broadcast nature of wireless transmissions and creates a virtual (distributed) antenna array through cooperating nodes to realize spatial diversity advantage.
Although there has been a growing literature on cooperative diversity, the current literature is mainly limited to Rayleigh fading channel model which typically assumes a wireless communication scenario with a stationary base station antenna above roof-top level and a mobile station at street level. In this thesis, we investigate cooperative diversity for inter-vehicular communication based on cascaded Rayleigh fading. This channel model provides a realistic description of inter-vehicular channel where two or more independent Rayleigh fading processes are assumed to be generated by independent groups of scatters around the two mobile terminals. We investigate the performance of amplify-and-forward relaying for an inter-vehicular cooperative scheme assisted by either a road-side access point or another vehicle which acts as a relay. Our diversity analysis reveals that the cooperative scheme is able to extract the full distributed spatial diversity. We further formulate a power allocation problem for the considered scheme to optimize the power allocated to broadcasting and relaying phases. Performance gains up to 3 dB are obtained through optimum power allocation depending on the relay location.
|
3 |
Performance analysis of channel codes in multiple antenna OFDM systemsSokoya, Oludare Ayodeji 10 June 2013 (has links)
Multiple antenna techniques are used to increase the robustness and performance of wireless networks. Multiple antenna techniques can achieve diversity and increase bandwidth efficiency when specially designed channel codes are used at the scheme’s transmitter. These channel codes can be designed in the space, time and frequency domain. These specially designed channel codes in the space and time domain are actually designed for flat fading channels and in frequency selective fading channel, their performance may be degraded. To counteract this possible performance degradation in frequency selective fading channel, two main approaches can be applied to mitigate the effect of the symbol interference due to the frequency selective fading channel. These approaches are multichannel equalisation and orthogonal frequency division multiplexing (OFDM). In this thesis, a multichannel equalisation technique and OFDM were applied to channel codes specially designed for multiple antenna systems. An optimum receiver was proposed for super-orthogonal space-time trellis codes in a multichannel equalised frequency selective environment. Although the proposed receiver had increased complexity, the diversity order is still the same as compared to the code in a flat fading channel. To take advantage of the multipath diversity possible in a frequency selective fading channel, super-orthogonal block codes were employed in an OFDM environment. A new kind of super-orthogonal block code was proposed in this thesis. Super-orthogonal space-frequency trellis-coded OFDM was proposed to take advantage of not only the possible multipath diversity but also the spatial diversity for coded OFDM schemes. Based on simulation results in this thesis, the proposed coded OFDM scheme performs better than all other coded OFDM schemes (i.e. space time trellis-coded OFDM, space-time block coded OFDM, space-frequency block coded OFDM and super-orthogonal space-time trellis-coded OFDM). A simplified channel estimation algorithm was proposed for two of the coded OFDM schemes, which form a broad-based classification of coded OFDM schemes, i.e. trelliscoded schemes and block-coded schemes. Finally in this thesis performance analysis using the Gauss Chebychev quadrature technique as a way of validating simulation results was done for super-orthogonal block coded OFDM schemes when channel state information is known and when it is estimated. The results obtained show that results obtained via simulation and analysis are asymptotic and therefore the proposed analysis technique can be use to obtain error rate values for different SNR region instead of time consuming simulation. / Thesis (PhD)--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / unrestricted
|
4 |
Bit-interleaved coded modulation for hybrid rf/fso systemsHe, Xiaohui 05 1900 (has links)
In this thesis, we propose a novel architecture for hybrid radio frequency
(RF)/free–space optics (FSO) wireless systems. Hybrid RF/FSO systems
are attractive since the RF and FSO sub–systems are affected differently by
weather and fading phenomena. We give a thorough introduction to the RF
and FSO technology, respectively. The state of the art of hybrid RF/FSO systems
is reviewed. We show that a hybrid system robust to different weather
conditions is obtained by joint bit–interleaved coded modulation (BICM) of the
bit streams transmitted over the RF and FSO sub–channels. An asymptotic
performance analysis reveals that a properly designed convolutional code can
exploit the diversity offered by the independent sub–channels. Furthermore,
we develop code design and power assignment criteria and provide an efficient
code search procedure. The cut–off rate of the proposed hybrid system is also
derived and compared to that of hybrid systems with perfect channel state
information at the transmitter. Simulation results show that hybrid RF/FSO
systems with BICM outperform previously proposed hybrid systems employing
a simple repetition code and selection diversity.
|
5 |
Bit-interleaved coded modulation for hybrid rf/fso systemsHe, Xiaohui 05 1900 (has links)
In this thesis, we propose a novel architecture for hybrid radio frequency
(RF)/free–space optics (FSO) wireless systems. Hybrid RF/FSO systems
are attractive since the RF and FSO sub–systems are affected differently by
weather and fading phenomena. We give a thorough introduction to the RF
and FSO technology, respectively. The state of the art of hybrid RF/FSO systems
is reviewed. We show that a hybrid system robust to different weather
conditions is obtained by joint bit–interleaved coded modulation (BICM) of the
bit streams transmitted over the RF and FSO sub–channels. An asymptotic
performance analysis reveals that a properly designed convolutional code can
exploit the diversity offered by the independent sub–channels. Furthermore,
we develop code design and power assignment criteria and provide an efficient
code search procedure. The cut–off rate of the proposed hybrid system is also
derived and compared to that of hybrid systems with perfect channel state
information at the transmitter. Simulation results show that hybrid RF/FSO
systems with BICM outperform previously proposed hybrid systems employing
a simple repetition code and selection diversity.
|
6 |
Bit-interleaved coded modulation for hybrid rf/fso systemsHe, Xiaohui 05 1900 (has links)
In this thesis, we propose a novel architecture for hybrid radio frequency
(RF)/free–space optics (FSO) wireless systems. Hybrid RF/FSO systems
are attractive since the RF and FSO sub–systems are affected differently by
weather and fading phenomena. We give a thorough introduction to the RF
and FSO technology, respectively. The state of the art of hybrid RF/FSO systems
is reviewed. We show that a hybrid system robust to different weather
conditions is obtained by joint bit–interleaved coded modulation (BICM) of the
bit streams transmitted over the RF and FSO sub–channels. An asymptotic
performance analysis reveals that a properly designed convolutional code can
exploit the diversity offered by the independent sub–channels. Furthermore,
we develop code design and power assignment criteria and provide an efficient
code search procedure. The cut–off rate of the proposed hybrid system is also
derived and compared to that of hybrid systems with perfect channel state
information at the transmitter. Simulation results show that hybrid RF/FSO
systems with BICM outperform previously proposed hybrid systems employing
a simple repetition code and selection diversity. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
|
7 |
Signal design for multi-way relay channelsSharifian, Shaham 20 December 2016 (has links)
Today’s communication systems are in need of spectrally efficient and high throughput
techniques more than ever because of high data rate applications and the scarcity
and expense of bandwidth. To cope with increased data rate demands, more base
stations are needed which is not cost and energy efficient in cellular networks. It
has been shown that wireless relay networks can provide higher network throughput
and increase power efficiency with low complexity and cost. Furthermore, network
resources can be utilized more efficiently by using network coding in relay networks.
A wireless relay network in which multiple nodes exchange information with the
help of relay node(s) is called a multi-way relay channel (MWRC). MWRCs are
expected to be an integral part of next generation wireless standards. The main
focus of this dissertation is the investigation of transmission schemes in an MWRC to
improve the throughput and error performance. An MWRC with full data exchange
is assumed in which a half-duplex relay station (RS) is the enabler of communication.
One of the challenges with signal demodulation in MWRCs is the existence of
ambiguous points in the received constellation. The first part of this dissertation
investigates a transmission scheme for full data exchange in MWRC that benefits from
these points and improves its throughput by 33% compared to traditional relaying.
Then an MWRC is considered where a RS assists multiple nodes to exchange messages.
A different approach is taken to avoid ambiguous points in the superposition of
user symbols at the relay. This can be achieved by employing complex field network
coding (CFNC) which results in full data exchange in two communication phases.
CFNC may lead to small Euclidean distances between constellation points, resulting
in poor error performance. To improve this performance, the optimal user precoding
values are derived such that the power efficiency of the relay constellation is highest
when channel state information is available at the users. The error performance of
each user is then analyzed and compared with other relaying schemes.
Finally, focusing on the uplink of multi-way relay systems, the performance of an
MWRC is studied in which users can employ arbitrary modulation schemes and the
links between the users and the relay have different gains, e.g. Rayleigh fading. Analytical
expressions for the exact average pairwise error probability of these MWRCs
are derived. The probability density function (PDF) and the mean of the minimum
Euclidean distance of the relay constellation are closely approximated, and a tight
upper bound on the symbol error probability is developed. / Graduate
|
Page generated in 0.0745 seconds