Spelling suggestions: "subject:"paleoecological"" "subject:"paleoecologic""
1 |
Neogene fluvial deposits along the south-west coast of South Africa understanding the palaeoclimate through proxiesSciscio, Lara January 2011 (has links)
Branched glycerol dialkyl glycerol tetraether (GDGTs) membrane lipids have been used as a new proxy for the reconstruction of terrestrial palaeoclimates. These biomarkers (or molecular ‗fossils‘) in conjunction with palynology, have been effective in the novel analysis of Miocene organic-rich sediments from three South African west coast sites at Rondeberg, Noordhoek and Langebaanweg. Lastly, a Quaternary south coast site at Rietvlei, South Africa, was also studied to further elucidate the extent of use of this new proxy. The fluvial peat and organic-rich deposits of the Elandsfontyn Formation (Sandveld Group) were investigated at Noordhoek, Langebaanweg and Rondeberg to provide new evidence for the climate and vegetation patterns during Miocene in this region. Drill-core and quarry samples from all four sites were freeze-dried, powered, and prepared for biogeochemical and palynological analyses. The methylation index of branched tetraethers (MBT) and cyclisation ratio of branched tetraethers (CBT) proxies were used to calculate the mean annual air temperature (MAAT) and pH values of the organic-rich horizons at time of deposition. The Branched versus isoprenoid index of tetraethers (BIT) was used to assess the relative contributions of marine archaeal and terrestrial bacterial tetraethers, and thereby assess the validity of the MBT, CBT and calculated palaeoenvironmental factors. The results presented in this thesis suggest that the use of the MBT/CBT proxy has significant potential in southern Africa, and may complement previously attempted palaeoclimatic and palaeoecological studies of Neogene-aged South African sediments. This type of research has the capacity to provide palaeoenvironmental information where other proxies may be absent. Results indicate that all sites yielded branched tetraether membrane lipids with the exception of Rondeberg, where GDGTs were below detection as a result of poor preservation conditions. Palynological investigation confirmed proxy derived temperatures. Furthermore palynomorph analyses supplemented earlier studies of the Noordhoek site and were piloted for the Rondeberg site, reaffirming alternating sequences of tropical and subtropical palynofloras. The MAATs, likewise, show variability and pronounced trends through time at the Langebaanweg and Noordhoek sites, generally corresponding with the variation and diversity of the pollen population. The terrestrial MAAT results appear to compliment Southern Hemisphere sea level changes associated with Antarctic glaciations. Additionally, this data shows a pattern similar to the Southern and Northern Hemisphere marine isotope records of relative fluctuations in the global climate and sea level change from the early to middle Miocene. The application of these past climate change indicators have been proved to be useful in the reconstruction of South Africa Miocene palaeoclimates, and may aid in understanding the consequences of climate change in the Cape region.
|
2 |
The comparative paleoecology of late Miocene Eurasian hominoidsScott, Robert Smith 28 August 2008 (has links)
Not available / text
|
3 |
Biostratigraphy, taphonomy, and paleoecology of vertebrates from the Sucker Creek Formation (Miocene) of southeastern Oregon.Downing, Kevin Francis. January 1992 (has links)
The Sucker Creek Formation exposures at Devils Gate in southeastern Oregon have yielded a significant small mammal fauna of at least thirty small mammal taxa from five stratigraphic horizons. The mammal-bearing portion of the Devils Gate section is more than 200 m thick. Fossil mammals occur in lacustrine and marginal lacustrine deposits lower in the section and occur in overbank and paleosol deposits higher in the section. ⁴⁰Ar/³⁹Ar single-crystal laser-fusion dates on three Devils Gate ashes shows that the age of the mammal-bearing sequence at Devils Gate spans the late early Barstovian land-mammal age with possible overlap into the late Barstovian, as currently defined. Duration of the entire mammal-bearing portion of the Devils Gate section was less than a million years. Both a new ash date from the type section and biostratigraphic correlations between Devils Gate and the type section support considerable temporal overlap between the two exposures. The Devils Gate Local Fauna includes several new taxa: a phyllostomatid bat; two "flying squirrels", Petauristodon sp. A and Petauristodon sp. B; and an eomyid rodent, Leptodontomys sp. A. Several fossil occurrences represent the first record of a taxon in the northern Great Basin and/or in the Barstovian land-mammal age, including: Blackia sp., Schaubeaumys grangeri, Protospermophilus quatalensis, and Pseudadjidaumo stirtoni. The Stagestop locality produced two new taxa, Copemys sp. aff C. esmeraldensis and Mystipterus sp. The Stagestop local fauna is Clarendonian in age. Concretions are an important source of fossil mammals in exposures of the Sucker Creek Formation. Geochemical analyses show that concretions formed through a complex interaction between bone and surrounding volcaniclastic material. Although some superficial bone was consumed during concretion diagenesis, concretion development reduced the chance of prolonged chemical and physical destruction of bone during later soil development. The broad ecological diversity of small mammals recovered from Devils Gate supports an interpretation of the local paleoecology as a mosaic of grassland, forest, and pond/lake-bank environments. Sequential small mammal faunas across a prominent ash event show a generally stable composition with no pronounced ecomorphic differences in pre- and post-volcanic disturbance intervals. Therefore, small mammals do not show analogous ecological patterns to disturbance-driven plant successions in the Sucker Creek Formation. I infer that the local ecosystem recovered from volcanic blasts at a temporal scale below the resolution of time-averaged, post-disturbance paleosols.
|
Page generated in 0.0338 seconds