• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 15
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 17
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

4D paleoenvironmental evolution of the Early Triassic Sonoma Foreland Basin (western USA) / Evolution paléoenvironnementale 4D du Bassin Foreland de Sonoma au Trias Inférieur (Ouest-USA)

Caravaca, Gwénaël 10 July 2017 (has links)
Introduction : la Terre au Trias inférieur et la reconquête après l’extinction fini-PermienneSitué après la limite entre le Paléozoïque et le Mésozoïque, le Trias inférieur est un intervalle court (~4Ma seulement ; Ovtcharova et al., 2006 ; Galfetti et al., 2007a ; Baresel et al., 2017). Lors de la transition entre le Permien et le Trias (PTB), la configuration tectonique de la Terre était différente, et la plupart des masses continentales étaient rassemblées en un seul super continent, la Pangée, lui-même entouré par un unique océan global, la Panthalassa (e.g., Murphy & Nance, 2008 ; Murphy et al., 2009 ; Stampfli et al., 2013).Lors de cette transition et durant le Trias inférieur, un évènement volcanique majeur, la mise en place de la grande province ignée de Sibérie (e.g., Ivanov et al., 2009, 2013), a conduit à l’émission de grande quantité de gaz à effet de serre (e.g., Galfetti et al., 2007b ; Romano et al., 2013). Ceux-ci ont contribué à l’acidification de la colonne d’eau et à l’augmentation des températures consécutivement à l’injection de CO2 dans l’atmosphère (e.g., Galfetti et al., 2007b ; Sun et al., 2012 ; Romano et al., 2013).Les perturbations environnementales qui en découlèrent ont eu des conséquences sur les milieux de dépôts associés à cette période, mais également sur les écosystèmes. Elles sont supposées avoir contribué à la mise en place de conditions délétères pour les organismes et avoir perduré durant tout le Trias inférieur, restreignant ainsi la rediversification biologique d’après-crise (e.g., Pruss & Bottjer, 2004 ; Fraiser & Bottjer, 2007 ; Bottjer et al., 2008 ; Algeo et al., 2011 ; Meyer et al., 2011 ; Bond & Wignall, 2014 ; Song et al., 2014).La limite PT fut le théâtre de la plus importante et la plus destructrice crise biologique du Phanérozoïque, et fut responsable de la disparition de plus de 90% des espèces marines (Raup, 1979), ou encore de la perte d’environ 50% des familles de tétrapodes continentaux (Benton & Newell, 2014), pour ne citer que ces deux exemples. De nombreux groupes ont été oblitérés durant cette extinction, comme par exemple les groupes caractéristiques du Paléozoïque tels que les coraux tabulés ou encore les trilobites (Sepkoski, 2002). Cependant, si la Vie a failli s’éteindre à l’aube du Mésozoïque, celle-ci a tout de même pu se reconstruire, au prix d’une rediversification communément admise comme lente et difficile dans des conditions environnementales délétères (e.g., Twitchett, 1999 ; Fraiser & Bottjer, 2007 ; Meyer et al., 2011 ; Chen & Benton, 2012). De grands paradigmes sont couramment associés à la rediversification du Trias inférieur (illustrés dans la Figure R.1a) :La présence de taxons « désastre », représentant des organismes opportunistes et généralistes qui auraient proliféré à la suite de la libération de niches écologiques laissées vacantes par les métazoaires disparus (e.g. ; Schubert & Bottjer, 1992, 1995 ; Rodland & Bottjer, 2001 ; He et al., 2007) ;Des faciès dit « anachroniques », composés de récifs exclusivement microbiens tels ceux trouvés dans les dépôts Précambriens (e.g., Schubert & Bottjer, 1992 ; Woods et al., 1999 ; Pruss & Bottjer, 2005 ; Pruss et al., 2005 ; Woods, 2009) ;Un effet « Lilliput », soit un nanisme généralisé des faunes présentes (e.g., Urbanek, 1993 ; Hautmann & Nützel, 2005 ; Payne, 2005 ; Twitchett, 2007 ; Fraiser et al., 2011 ; Metcalfe et al., 2011 ; Song et al., 2011) ;Une anoxie/euxinie généralisée dans le domaine marin, y compris littoral (e.g., Isozaki, 1997 ; Meyer et al., 2011 ; Song et al., 2012 ; Grasby et al., 2013).Fig. R.1 : a) Représentation synthétique des principaux paradigmes communément acceptés pour la rediversification biologique au cours du Trias inférieur. b) Représentation synthétique de ces mêmes paradigmes, révisés selon les données récemment recueillies dans le bassin ouest-américain (d’après Brayard, 2015). Inf. : inférieur ; m. : moyen ; s./sup. : supérieur (...). / In the wake of the Mesozoic, the Early Triassic (~251.95 Ma) corresponds to the aftermath of the most severe mass extinction of the Phanerozoic: the end-Permian crisis, when life was nearly obliterated (e.g., 90% of marine species disappeared). Consequences of this mass extinction are thought to have prevailed for several millions of years, implying a delayed recovery lasting the whole Early Triassic, if not more.Several paradigms have been established and associated to a delayed biotic recovery scenario expected to have resulted from harsh and deleterious paleoenvironments. These paradigms include a global anoxia in the marine realm, a “Lilliput” effect, and the presence of “disaster” taxa and “anachronistic” facies. However, recent works have shown a more complex global scheme for the Early Triassic recovery, and that a reevaluation of these paradigms was needed. Especially, new data from the western USA basin were critical in re-addressing these paradigms.The western USA basin is the result of a long tectono-sedimentary history that started 2 Gyr ago by the amalgamation of different lithospheric terranes forming its basement. A succession of orogenies and quiescence phases led to the formation of several successive basins in the studied area, and traces of this important geodynamical activity are still present today. The Sonoma orogeny occurred about 252 Ma in response to the eastward migration of drifting arcs toward the Laurentian craton. As a result, compressive constrains lead to the obduction of the Golconda Allochthon above the west-Pangea margin in present-day Nevada. Emplacement of this topographic load provoked the lithosphere flexuration beneath present-day Utah and Idaho to form the Sonoma Foreland Basin (SFB) studied in this work.The SFB record an excellent fossil and sedimentary record of the Early Triassic. A relatively high and complex biotic diversity has been observed there leading to describe a rapid and explosive recovery for some groups (e.g., ammonoids) in this basin after the end-Permian crisis. The sedimentary record is also well developed and has been studied extensively for a long time. Overall, these studies notably documented a marked difference between the northern and southern sedimentary succession within the basin, whose origin was poorly understood.This work therefore aims to characterize the various depositional settings in the Early Triassic SFB, as well as their paleogeographical distribution. Their controlling factors are also studied based on an original integrated method using sedimentological, paleontological, geochemical, geodynamical, structural and cartographic analyses. Aside the fossil and sedimentary discrepancy between the northern and the southern parts of the SFB, geochemical analyses provide new insights supporting this N/S dichotomy. This study also questions the validity of the geochemical signal as a tool for global correlation, as it appears to mainly reflect local forcing parameters.The geodynamical framework of the SFB was also investigated along with a numerical modelling of the rheological behavior of the basin. This work distinguishes the northern and southern parts of the basin based on markedly distinct tectonic subsidence rates during the Early Triassic: ~500 m/Myr in the northern part vs ~100m/Myr in the southern part. Origin of this remarkable difference is found in inherited properties of the basin basement itself. Indeed, different ages and therefore, rheological behaviors (i.e., rigidity to deformation and flexuration) of the basement lithospheric terranes act as a major controlling factor over the spatial distribution of the subsidence, and therefore of the sedimentary deposition. The lithosphere heritage is thus of paramount importance in the formation, development and spatio-temporal evolution of the SFB.This work leads to a new paleogeographical representation of the Sonoma Foreland Basin and its multi-parameter controlling factors (...).
42

Paleoenvironmental reconstruction of cretaceous-tertiary kaolin deposits in the Doula Sub-Basin in Cameroon

Bukalo, Ntumba Nenita 18 September 2017 (has links)
PhD (Geology) / Department of Mining and Environmental Geology / Cretaceous-Tertiary Periods marked the break-up of Gondwana, a large landmass composed of most of the present-day southern continents. In understanding the events of the supercontinental break-up, paleoenvironmental studies need to be carried out. In such studies, kaolinites could be used as paleoenvironmental proxies due to their small particle sizes and large surface area. It is in this context that this research sought to reconstruct the paleoenvironments in which selected Cretaceous-Tertiary kaolin deposits in the Douala Sub-Basin in Cameroon formed. To achieve this objective, mineralogical and geochemical characterisations were carried out using x-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectrometry, thermal analyses and x-ray fluorescence spectroscopy. Trace elements and stable isotopes were analysed using mass spectrometries. Ages of zircons in the kaolins were determined using laser ablation magnetic sector-field inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) U-Pb geochronology. Diagnostic evaluation for industrial applications of the kaolins were carried out using particle size distribution, texture, moisture content, pH, and electric conductivity. Six kaolin deposits from Cretaceous-tertiary Formations of the Douala Sub-Basin were studied; namely, Bomkoul (Tertiary), Dibamba (Tertiary), Ediki (Cretaceous), Logbaba (Cretaceous), Missole (Tertiary) and Yatchika (Cretaceous). The nature and occurrences of these kaolin deposits in Cameroon were determined through thorough mineralogical and geochemical characterisations of bulk (< 2 mm size fraction), silt (2-63 μm size fraction) and clay samples (< 2 μm size fraction). By quantifying the mineral phases present, the morphology and the functional groups in the kaolins are presented as the mineralogical characteristics of kaolins of each study site; whereas, the major oxides geochemistry and the micro-elemental composition constitute the geochemical characteristics of these kaolins. The minerals’ geneses were also determined and the prevailing paleoenvironmental and paleoclimatic conditions in which they were formed were reconstructed using trace elements and stable isotopes of oxygen and hydrogen in kaolinite. The maximum age of the kaolins were determined using U-Pb LA-SFICP-MS dating of zircons in the kaolin deposits. Diagnostic evaluation of the kaolins was carried out, and involved the determination of physical characteristics (particle size, texture, colour and moisture content) and physico-chemical characteristics (pH and electrical conductivity). Results showed that kaolinite and quartz (as major phases), smectite and/or illite (as minor phases), anatase and rutile (as minor or trace phases), goethite and hematite (as trace viii phases) were the mineral phases present in bulk and silt samples. Whereas, in the < 2 μm fractions, the mineral phases are made up of kaolinite and smectite (as major phases), smectite and/or illite (as minor phases), anatase and rutile (as minor or trace phases), goethite and hematite (as trace phases). The kaolins are mostly made up of thin platy or pseudo-hexagonal particles or flakes, books or stacks of kaolinite. The Dibamba, Logbaba and Missole II kaolins have well-ordered structures. Exothermic peak temperatures were generally between 943-988oC. The most abundant major oxides are silica and alumina, followed by iron oxide and titania; though Logbaba and Missole II had higher titania than iron oxide. 85% of the kaolins, portrayed extreme silicate weathering (chemical index of alteration > 80%) and are compositionally mature (index of compositional variability > 0.78). The geochemical composition of the kaolins showed that source rocks of these kaolins vary between rhyolite/granite and rhyolite/granite + basalt. The geochemistry also suggested that the kaolins formed in a marine environment (except Logbaba samples). Trace elements results revealed that Cretaceous-Tertiary kaolins in the Douala Sub-Basin are mainly enriched in rare earth elements compared to the upper continental crust, and have negative Eu anomaly. Large ion lithophiles (mainly Rb and U) were highly enriched in samples, high field strength elements (Y and Nb) were enriched in studied samples of all fractions; and transition trace elements generally had concentrations quite similar to upper continental crust values. Stable isotopes showed that the kaolins were formed in a supergene environment; and temperatures of kaolinitisation (assuming equilibrium with the global meteoric water line) were 26.58oC ± 9.65oC for Cretaceous kaolins and 29.40oC ± 7.22oC for Tertiary kaolins. Assuming equilibrium with the local (Douala) meteoric water line, the temperatures of kaolinitisation were 24.64oC ± 9.48oC for Cretaceous and 27.42oC ± 7.08oC for Tertiary kaolins. Four main zircon populations were identified from radiogenic dating: the 1st between 550 and 650 Ma, the 2nd between 950 and 1050 Ma, the 3rd around 1600 Ma and the 4th between 2800-3200 Ma. These four zircon populations belong to the Proterozoic (Neo-, Meso- and Paleoproterozoic) and the Archean. The maximum depositional ages of the kaolins, reflected by the youngest weighted averages of zircon populations varied between 588 ± 2 Ma and 612 ± 2 Ma, all belonging to the Ediacaran Period (Neoproterozoic). The diagnostic evaluation of the kaolins revealed that the kaolins are very sandy, with 50% of the samples having a sandy loamy clay or sandy loam texture. The colour of the samples varied considerably from white to darker colours (dark grey); with 15% of the kaolins being light reddish brown. The moisture content was generally very low (< 2 wt %) in all size fractions, except in Yatchika samples (moisture content > 2 wt %). The kaolins are generally acidic, with ix a pH(KCl) varying between 3.06 and 3.81, except in Missole I samples, which had a pH (KCl) < 2. The electrical conductivity (EC) generally varied between 20 to ~ 50 μS/cm, except Dibamba and MSL II 01 samples which had EC values in the interval 50 μS/cm < EC < 80 μS/cm; and Missole I samples having an EC > 7500 μS/cm. In conclusion, no great distinction was found between Cretaceous and Tertiary kaolins of the Douala Sub-Basin based on their mineralogy and geochemistry. The best kaolins in terms of these characteristics, and in comparison with the Georgia Kaolins (known for their high kaolinite quality), were the Dibamba (Tertiary), Logbaba (Cretaceous) and Missole II (Tertiary) kaolins. Based on their compositional maturity and mineralogical characteristics, these three kaolins are considered to be second cycle sediments; unlike Bomkoul, Yatchika and Ediki kaolins, which are believed to be first cycle sediments. Based on the trace elements and stable isotopes composition, Cretaceous and Tertiary kaolins of the Douala Sub-Basin were derived from felsic rocks. However, Cretaceous kaolins were formed in a cooler anoxic reducing environment; whereas the Tertiary kaolins were formed in a warmer oxidising environment, with higher precipitation. Ages of zircons in Cretaceous-Tertiary kaolins suggested that the zircon formed during two main tectonic events: the Eburnean orogeny, during which older zircons crystallised and the Pan-African orogeny, during which younger zircons crystallised. The maximum depositional ages of the kaolins varied between 588 ± 2 Ma and 612 ± 2 Ma. The main identified sources of these zircons are the Archean Ntem Complex, the Paleoproterozoic Nyong Group and the Neoproterozoic Yaounde Group. The diagnostic evaluation indicated that the particle size greatly influences the mineralogy and geochemistry of the kaolins because the finer particles (< 2 μm) have higher amounts of kaolinite and Al2O3. The moisture content of the kaolins makes them suitable as paint fillers and in soap production. Paper coating, paper filler, ceramics, pharmaceutics and cosmetics are potential applications for the kaolins, though particle size reduction and beneficiation will give them a higher quality. However, because these kaolin deposits are not big and extensive, they cannot be recommended for large scale industrial applications; but they can be used for bricks, pottery and stoneware manufacturing.
43

Paleo-environmental conditions and tectonic settings of cretaceous-tertiary kaolins in the Eastern Dahomey and Niger Delta Basins in Nigeria.

Oyebanjo, Olaonipekun Moses 18 May 2018 (has links)
PhDENV (Geology) / Department of Mining and Environmental Geology / The Cretaceous period marked the breaking up of Gondwana, giving rise to the separation of the African and South American continents with the subsequent emergence of the South Atlantic Ocean. Most correlation studies between the two continents with respect to paleoenvironmental conditions and tectonic settings during the Cretaceous- Tertiary periods have been concentrated more on the use of flora and fauna as indicators with less application of kaolinite as paleoenviromental proxies, hence, this study. The research involved the evaluation of paleoenvironmental conditions and tectonic settings of four (4) selected Cretaceous-Tertiary kaolin deposits with two (2) each from the Eastern Dahomey (Eruku and Lakiri) and Niger Delta (Awo-Omama and Ubulu-Uku) Basins in Nigeria. Representative kaolin samples collected from the selected deposits were analysed for physico-chemical, mineralogical, geochemical, isotopic, and geochronological data. The geochemical data obtained by x-ray fluorescence (XRF) spectroscopy and laser ablation inductively coupled plasma mass spectrometry (LAICPMS) were used in unraveling the provenance and tectonic settings of the kaolins. The kaolinite stable isotopic data for oxygen and hydrogen determined using a Finnigan Delta XP Mass Spectrometer were used to assess the paleoenvironmental and paleoclimatic conditions under which the kaolins were formed. The detrital zircon geochronological data acquired by laser ablation – single collector – magnetic sectorfield – inductively coupled plasma – mass spectrometry (LA-SFICP-MS) as well as kaolinite stable isotopic data were employed in constraining the probable timing of kaolinisation. The industrial applications of the kaolins were assessed based on the physico-chemical (Colour, particle size distribution (PSD), pH, electrical conductivity, and Atterberg limits), mineralogical, and geochemical data. The mineralogical data were obtained through x-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis and differential scanning calorimetry, and scanning electron microscopy (SEM). Correlative studies between selected Cretaceous African and South American kaolins were conducted. The results showed that the dominant colour in the studied kaolins was pale red (39 %) followed by pinkish and light grey (35 %) as well as reddish yellow, light pink, light brown, vii reddish brown, and pinkish white. The pH and EC values generally ranged from 4.27 to 5.29 and 0.2 to 13.1 μS/cm, respectively. The kaolins predominantly have clay to sandy clay textures with plasticity indices between 10 and 22 wt %. Bulk mineralogical quantitative results indicated that the Cretaceous kaolins have kaolinite, quartz, and muscovite present in that decreasing order with anatase, goethite, and hematite in traces whereas Tertiary kaolins have kaolinite and quartz present in that decreasing order with anatase and goethite in traces. In the silt fractions, kaolinite and quartz were the dominant mineral constituents, whereas in the clay fractions, the dominant clay mineral was kaolinite accounting for 69 to 99 wt % with the non-clay minerals like quartz, anatase, hematite and goethite accounting for percentages between 1 to 28 wt % in the Cretaceous – Tertiary kaolins. Morphologically, the studied kaolins were characterised by pseudohexagonal stacks to books and thin platy kaolinite particles with moderate structural order. The chemical compositions of the Cretaceous-Tertiary kaolin deposits were identical to hydrated alumino-silicates based on the dominance of SiO2, Al2O3 and LOI. The chemical index of alteration (CIA) and chemical index of weathering (CIW) values varied between 96.98 to 99.39 % and 98.95 to 99.89 %, respectively. The clay fractions were enriched in Cr, Nb, Sc, Th, U, V, Zr, and LREE and depleted in Ba, Co, Rb, Sr, and HREE, respectively, relative to the average Upper Continental Crust (UCC). The Th/Sc, La/Sc, Th/Cr, and Eu/Eu* ratios were within the range of sediments derived from felsic rocks. The TiO2 versus Al2O3 and La-Th-Sc plots indicated source rocks with granitic – granodioritic - gabbroic compositions. Geochemical discrimination plots showed that the Cretaceous and Tertiary kaolins were deposited in passive margin tectonic settings. The stable isotopic results indicated that the values of the Cretaceous kaolins ranged from – 47 to – 57 ‰ and 19.1 to 19.8 ‰, respectively, with paleotemperatures between 29.0 and 32.2 ˚C, whereas the δD and δ18O corresponding values for the Tertiary kaolins ranged from – 54 to – 66 ‰ and 20 to 21.5 ‰, respectively, with paleotemperatures between 17.0 and 23.9 ˚C. viii The U-Pb dating of the detrital zircons showed that the Cretaceous - Tertiary kaolins have inputs from rocks of Eburnean (2500 – 2000 Ma) and Pan African (750 – 450 Ma) ages. The age of maximum deposition determined from the least to statistically robust approach corresponds to the Ediacaran Period (645 – 541 Ma) of the Neoproterozoic Era (1000 – 541 Ma). The Cretaceous – Tertiary kaolins were formed under intense anoxic chemical paleoweathering conditions of predominantly felsic rocks in addition to contributions from intermediate and mafic rocks in passive margin tectonic settings. The Cretaceous kaolins were formed under warmer conditions relative to the Tertiary kaolins. The West African Massif rocks were the main sediment sources for the Cretaceous kaolins, whereas both the West African and Northern Nigerian Massif rocks were the major sediment sources for the Tertiary kaolins. The most probable timing of kaolinisation for the Cretaceous – Tertiary kaolins occurred between the Ediacaran (645 – 541 Ma) and Early Cretaceous Periods for the Cretaceous kaolins and between the Ediacaran Period (645 – 541 Ma) and Oligo – Miocene age for the Tertiary kaolins. The Nigerian and Brazilian Cretaceous kaolins formed under similar warm tropical paleoclimate. The study corroborated the occurrence of the Eburnean (Transamazonian) and Pan African (Brasiliano) orogenic events across the African and South American continents. Beneficiation of the Cretaceous – Tertiary kaolins will allow large scale industrial applications in paper coating, ceramics, pharmaceutical, and cosmetics industries. The major contributions from this study have been: the better understanding of the past environmental conditions and tectonic settings, the dating of the possible timing of kaolinisation, and improvement on the potential industrial applications of the Cretaceous – Tertiary kaolins. / NRF
44

A History of Place: Using Phytolith Analysis to Discern Holocene Vegetation Change on Sanak Island, Western Gulf of Alaska

Wilbur, Cricket C. January 2013 (has links)
No description available.

Page generated in 0.1063 seconds