• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 20
  • 17
  • 17
  • 15
  • 15
  • 15
  • 15
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Palladium- and copper-catalysed heterocycle synthesis

Ball, Catherine Jane January 2014 (has links)
A number of privileged starting materials based on aryl halide frameworks have emerged that allow access to a variety of different heterocyclic scaffolds through judicious choice of reaction conditions. This work describes efforts to develop and extend the utility of two of these general heterocycle precursors - ortho-(haloalkenyl)aryl halides A and α-(ortho-haloaryl) ketones B - in conjunction with cascade reactions involving the construction of key carbon-heteroatom bonds via palladium or copper catalysis. Chapter 1 entails an overview of the development of palladium- and copper-catalysed carbon-heteroatom bond forming processes. The application of these processes in heterocycle synthesis using ortho-(haloalkenyl)aryl halide and ortho-haloacetanilides/ α-(ortho-haloaryl) ketone precursors is also described. Chapter 2 focuses on the development of a two-step synthesis of cinnolines using ortho-(haloalkenyl)aryl halides via intermediate protected dihydrocinnoline derivatives C. Chapter 3 demonstrates how the inherent reactivity of protected dihydrocinnoline derivatives C can be harnessed to provide access to functionalised products. A brief target synthesis of a pharmaceutically-relevent cinnoline is also described. Chapter 4 details attempts to develop a novel synthesis of benzothiophenes D from both ortho-(haloalkenyl)aryl halide and α-(ortho-haloaryl) ketone precursors.
42

Synthesis and elaboration of heterocycles via palladium-catalyzed C-H functionalization

Gerelle, Maria January 2012 (has links)
Chapter 1 is a brief literature review of the most recent progress in the area of C-H functionalization via palladium catalysis. This covers the functionalization of electron deficient arenes and heterocycles with alkenyl and alkyl halides both using inter- and intra-molecular reactions. The chapter also contains an overview of recent work from the Willis group. Chapter 2 presents the functionalization of electron deficient arenes and alkenyl bromides using palladium catalysis, as well as the use of statistical analysis software for optimizing the cross-coupling reaction. Chapter 3 describes the cross-coupling of substituted benzoxazoles, benzothiazole and benzimidazole with a range of alkenyl iodides using palladium catalysis. The reaction can tolerate both (E) and (Z) disubstituted alkenes and tri-substituted alkenyl iodides, with retention of the double bond geometry. Chapter 4 details the synthesis of sultams via an intramolecular C-H functionalization using palladium catalysis. The chapter covers the optimization of the starting material synthesis as well as the cross-coupling reaction. We can access the sulfonamides from cyclohexenone and were able to incorporate a large range of substitution patterns (Scheme 3). Finally, Chapter 5 contains all the experimental details, general considerations and compound data. All the NMR spectra of novel compounds can be found in the appendix.
43

Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B Bonds

Jiang, Tuo January 2014 (has links)
Transition metal catalysis has emerged as one of the most versatile methods for the selective formation of carbon–carbon and carbon–heteroatom bonds. In particular, oxidative carbon–carbon bond forming reactions have been widely studied due to their atom economic feature. This thesis has been focused on the development of new palladium(II)-catalyzed carbocyclization reactions under oxidative conditions. The first part of the thesis describes the palladium(II)-catalyzed oxidative carbocyclization-borylation and -arylation of enallenes. In these reactions, the (σ-alkyl)palladium(II) intermediate, which was shown previously to undergo β-hydride elimination, could be trapped in situ by organoboron reagents (B2pin2 and arylboronic acids) to form new carbon–boron and carbon–carbon bonds. Through these two protocols, a range of borylated and arylated carbocycles were obtained as single diastereomers in high yields. The second part deals with a palladium(II)-catalyzed oxidative diarylative carbocyclization of enynes. The reaction was proposed to start with a syn-arylpalladation of an alkyne, followed by insertion of the coordinated alkene. Subsequent arylation afforded a series of valuable diarylated tetrahydrofuran and tetrahydropyran products. The final part of the thesis advances the previously developed palladium(II)-catalyzed oxidative carbocyclization-borylation of enallenes in an enantioselective manner. C2-symmetric chiral phosphoric acids were used as the novel co-catalyst to trigger the enantioselective formation of intramolecular carbon–carbon bonds. By using this chiral anion strategy, a number of enallenes were converted to the borylated carbocycles with high to excellent enantioselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
44

Synthesis of Substituted Pyrimidines and Pyridines as Ligands to the 5-HT7 Receptor

Blake, Ava L. 22 April 2010 (has links)
Of the seven existing classes of serotonin receptors, the 5-HT7 receptors (5-HT7Rs) are the most recently discovered. Abundance of 5-HT7 in the central nervous system is suggestive of the receptor’s role in several physiological and pathophysiological functions. Existing research has afforded a number of compounds exhibiting specific affinity to the receptor. These selective ligands can provide structural information about the receptor and can serve as the foundation for pharmacological profiling . This thesis describes the synthesis of substituted pyrimidines and pyridines for affinity to the 5-HT7 receptor. Organometallic species are the cornerstone for sev-eral of the synthetic pathways.
45

Synthetic Studies on Palladium-Catalyzed Olefin Dioxygenation, Indole Functionalization, and Helical Ligands

Antonic, Marija 15 December 2009 (has links)
Palladium-catalyzed olefin dioxygenation is a powerful tool in the generation of complex and valuable substrates, one which may become complimentary to the well known Sharpless dihydroxylation. In this work the mechanism of this transformation is examined via reaction kinetics and Hammett studies, which corroborate a PdII/IV catalytic cycle and suggest that the rate determining step is the oxidation of PdII to PdIV. Olefin dioxygenation was also found to proceed in the presence of catalytic quantities of BF3•OEt2 or triflic acid, with stoichiometric hypervalent iodine oxidant and an acetic acid solvent. Furthermore, asymmetric variants of intramolecular palladium-catalyzed olefin dioxygenation were also investigated, which resulted in the formation of tetrahydrofuran products in up to 36% ee. Next, chelate-assisted C–H bond functionalization of indoles at the C7 position and of carbazoles at the C1 position was investigated with a variety of arylation, halogenation and oxygenation techniques. Lastly, our efforts towards the synthesis of a mono-phosphine based [5]helicene ligand via olefin metathesis and photocyclization strategies will be discussed.
46

Synthetic Studies on Palladium-Catalyzed Olefin Dioxygenation, Indole Functionalization, and Helical Ligands

Antonic, Marija 15 December 2009 (has links)
Palladium-catalyzed olefin dioxygenation is a powerful tool in the generation of complex and valuable substrates, one which may become complimentary to the well known Sharpless dihydroxylation. In this work the mechanism of this transformation is examined via reaction kinetics and Hammett studies, which corroborate a PdII/IV catalytic cycle and suggest that the rate determining step is the oxidation of PdII to PdIV. Olefin dioxygenation was also found to proceed in the presence of catalytic quantities of BF3•OEt2 or triflic acid, with stoichiometric hypervalent iodine oxidant and an acetic acid solvent. Furthermore, asymmetric variants of intramolecular palladium-catalyzed olefin dioxygenation were also investigated, which resulted in the formation of tetrahydrofuran products in up to 36% ee. Next, chelate-assisted C–H bond functionalization of indoles at the C7 position and of carbazoles at the C1 position was investigated with a variety of arylation, halogenation and oxygenation techniques. Lastly, our efforts towards the synthesis of a mono-phosphine based [5]helicene ligand via olefin metathesis and photocyclization strategies will be discussed.
47

Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons

Richardson, John Michael 15 January 2008 (has links)
This work focuses on understanding the heterogeneous/homogeneous nature of the catalytic species for a variety of immobilized metal precatalysts used for C-C coupling reactions. These precatalysts include: (i) tethered organometallic palladium pincer complexes, (ii) an encapsulated small molecule palladium complex in a polymer matrix, (iii) mercapto-modified mesoporous silica metalated with palladium acetate, and (iv) amino-functionalized mesoporous silicas metalated with Ni(II). As part of this investigation, the use of metal scavengers as selective poisons of homogeneous catalysis is introduced and investigated as a test for distinguishing heterogeneous from homogeneous catalysis. The premise of this test is that insoluble materials functionalized with metal binding sites can be used to selectively remove soluble metal, but will not interfere with catalysis from immobilized metal. In this way the test can definitely distinguish between surface and solution catalysis of immobilized metal precatalysts. This work investigates three different C-C coupling reactions catalyzed by the immobilized metal precatalysts mentioned above. These reactions include the Heck, Suzuki, and Kumada reactions. In all cases it is found that catalysis is solely from leached metal. Three different metal scavenging materials are presented as selective poisons that can be used to determine solution vs. surface catalysis. These selective poisons include poly(vinylpyridine), QuadrapureTM TU, and thiol-functionalized mesoporous silica. The results are contrasted against the current understanding of this field of research and subtleties of tests for distinguishing homogeneous from heterogeneous catalysis are presented and discussed.
48

Palladium(II)-catalysed total synthesis of naturally occurring pyrano[3,2-a]carbazole and pyrano[2,3-b]carbazole alkaloids

Hesse, Ronny, Jäger, Anne, Schmidt, Arndt W., Knölker, Hans-Joachim 21 July 2014 (has links)
Seven naturally occurring pyranocarbazole alkaloids (pyrayafoline A–E, O-methylmurrayamine A and O-methylmahanine) have been obtained by total synthesis using a palladium(II)-catalysed oxidative cyclisation of a diarylamine to an orthogonally diprotected 2,7-dihydroxycarbazole as key step.
49

Nouvelles réactions multicomposants et ouverture de cycles contraints pour la synthèse d’hétérocycles / New multicomponent reactions and constrained rings opening towards heterocycles synthesis

Nyadanu, Aude 10 October 2018 (has links)
Les réactions multicomposants (MCR) constituent une réponse à deux grands défis rencontrés par la chimie pharmaceutique : la découverte de nouvelles molécules bioactives ainsi que leur production à moindre coût dans le respect de l’environnement. En effet, en combinant plusieurs réactifs de façon monotope, les MCR permettent de synthétiser une grande diversité de molécules complexes par des procédés simples et rapides, avec de bons rendements, et en limitant fortement les déchets de réaction. Dans le cadre de cette thèse, nous avons mis au point de nouvelles réactions multicomposants impliquant des isonitriles, composés à la réactivité exceptionnellement riche.Nous nous sommes d’abord intéressés à l’utilisation d’acides forts dans la réaction de Ugi. Les premiers essais ont été réalisés avec des acides sulfiniques, sulfoniques, phosphiniques et phosphoniques, sans succès. Mais grâce à l’introduction de l’acide nitrique comme composant acide dans la réaction de Ugi, nous avons décrit une synthèse monotope de nitramines hautement fonctionnalisées à partir d’un aldéhyde, un isonitrile et un nitrate d’ammonium. Nous avons ainsi développé la première réaction multicomposant conduisant à la formation d’une liaison N-N.Nous avons également proposé une nouvelle variante de la réaction de Passerini impliquant des dérivés thiocarbonylés. Ces derniers étant généralement peu stables, nous avons mis au point une stratégie pour générer un thiocarbénium in situ à partir d’un 3-sulfanyl phthalide, en présence de tétrachlorure de titane. Le couplage de ce thiocarbénium avec un isonitrile et un acide carboxylique a conduit à la synthèse divergente de deux types d’hétérocycles soufrés : les thiophthalides et les 3-amino-4-sulfanyl isocoumarines. Cette étude constitue la première approche formelle de la réaction de Thio-Passerini.Enfin, dans la continuité de notre intérêt pour les dérivés soufrés, nous avons décrit une nouvelle synthèse de thiovinyléthers. Ces composés, synthétiquement équivalents à des dérivés thiocarbonylés, ont été obtenus par l’ouverture palladocatalysée de thiocyclopropanes. Si le recours à des métaux de transition pour l’ouverture de cycles contraints est bien connue pour des dérivés oxygénés ou azotés, il s’agit de la première réaction de ce type pour des dérivés soufrés.Ainsi, trois méthodologies originales ont été développées. Elles donnent accès à différents types de composés fonctionnalisés, potentiellement utiles en pharmacie et en agrochimie. Ces travaux s’appuient fortement sur la réactivité unique des isonitriles et viennent compléter cette chimie particulièrement riche. / Multicomponent reactions (MCR) are a response to two big challenges faced by pharmaceutical chemistry : the discovery of new bioactive molecules and their production with reduced costs in a environmentally acceptable way. Indeed, by combining several reactants in one pot, MCR allow the synthesis of a wide diversity of complex molecules by simple and quick procedures, with good yields, and with limited amounts of reaction waste. In the framework of this thesis, we have developed new isocyanide-based multicomponent reactions, these compounds having an exceptionnaly rich reactivity.First, we were interested in the use of strong acids in the Ugi reaction. The first trials were made with sulfinic, sulfonic, phosphinic and phosphonic acids, and they failed. Nevertheless, thanks to the introduction of nitric acid as the acid component in the Ugi reaction, we described a one-pot synthesis of highly functionalized nitramines starting from an aldehyde, an isocyanide and an ammonium nitrate. This transformation is the first multicomponent reaction leading to a N-N bond formation.We also proposed a new variant for the Passerini reaction, involving thiocarbonyl derivatives. These compounds generally being quite unstable, we imagined a strategy in order to generate a thiocarbenium in situ from a 3-sulfanyl phthtalide, in the presence of titanium chloride. The coupling of this thiocarbenium with an isocyanide and a carboxylic acid leads to a divergent synthesis of two types of sulfur-containing heterocycles : thiophthalides and 3-amino-4-sulfanyl isocoumarines. This study represents the first formal approach of a Thio-Passerini reaction.Finally, as part of our continuing interest in in sulfur-containing derivatives, we described a new synthesis of thiovinylethers. These compounds, synthetically equivalent to thiocarbonyl derivatives, were obtained by the palladium-catalyzed ring opening of thiocyclopropanes.While the use of transition metals for constrained ring opening is well known for oxygen or nitrogen derivatives, this is the first reaction of this type for sulfur derivatives.Overall, we developed three original methodologies that give access to different types of functionalized compounds, potentially useful in pharmacy and agrochemistry. This work relies on the unique reactivity of isocyanides and adds on this especially rich chemistry.
50

Reactions of allenylpalladium intermediates in organic synthesis

Daniels, David S. B. January 2013 (has links)
This thesis describes our examination of the reactivity of allenylpalladium intermediates generated from the reaction of palladium(0) with propargylic electrophiles. Chapter 1 provides a general overview of the literature reported to date concerning the nature and reactivity of allenylpalladium intermediates. The coupling of a variety of propargylic electrophiles with aryl boronic acids to form allenes is examined in Chapter 2. However, when employing diastereomerically pure electrophiles, some erosion of stereochemistry was observed in the allene products. This effect was examined further, and epimerisation of the allene product was found to be the origin of the loss of stereochemistry. Evidence for the species likely responsible for this epimerisation is presented. The serendipitous formation of tetrahydrofurans (THFs) from propargylic 7-membered cyclic carbonates prompted an in-depth examination of this reactivity, as described in Chapter 3. The reaction of these cyclic carbonates was rendered stereoselective and the stereochemical outcome of the reaction elucidated. The methodology was extended to propargylic acyclic carbonates which allowed the formation of tetrahydropyrans (THPs). The effect of ring-size and substituents on the cyclisations was examined, culminating in the formation of two rings in a single step from diol-containing bis-carbonates. Chapter 4 describes the extension of this methodology to the formation of azacyclic products. This built upon foundation work conducted by a Part II student within the group, and further improved the selectivity of the reaction. Two diverse azacyclic skeletons could be formed from the same substrate by the employment of different bidentate phosphine ligands, and a variety of substrates were examined under these conditions. Chapter 5 draws general conclusions and sets out possible future directions for the methodology, and full experimental details are outlined in Chapter 6.

Page generated in 0.0752 seconds