• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glucose-induced oscillations in protein phosphorylation in clonal pancreatic beta-cells (INS-1): implications for metabolic function

Narmuratova, Gulzhan 10 March 2022 (has links)
OBJECTIVE: Type 2 diabetes (T2D), the most common type of diabetes characterized by high blood glucose and insulin resistance, results from both genetic and environmental factors. Our lab has proposed that chronic excess nutrients induce insulin hypersecretion from the pancreatic ß-cell, contributing to hyperinsulinemia, a prequel to T2D. Normal glucose-stimulated insulin secretion (GSIS) is oscillatory, a feature that is lost in patients with T2D. In this thesis we examine the oscillatory secretion profiles of clonal pancreatic ß-cells cultured in normal and excess nutrients that mimic conditions of T2D. We also begin to examine oscillations in protein phosphorylation that may contribute to normal ß-cell metabolism and GSIS, but if altered might potentially lead to impaired insulin secretion. METHODS: Nutrient regulation of oscillatory insulin release was studied in clonal pancreatic β-cells (INS-1) cultured in multiwell plates in both low (4 mM) and high (11 mM) glucose. Insulin secretion was stimulated in cells from multiwell plates one well at a time at 30 sec intervals and sampled simultaneously at the end of the timecourse. Insulin secretion and insulin content were measured using a homogenous time-resolved fluorescence (HTRF) insulin kit (Cisbio). Protein was extracted from these same cells for analysis of time-dependent phosphorylation by western blot using specific antibodies. Protein phosphorylation was detected using SuperSignal West Femto chemiluminescence reagent (ThermoFisher) and imaged on an iBright Imaging System (Invitrogen). RESULTS: Insulin secretion from INS-1 cells grown in separate plates and in 4 mM glucose oscillated with a period of 8.2  0.5 min compared to 5.0  0.5 min in cells cultured at 11 mM glucose. The amplitude of oscillations was 40.4  11.5 and 14.6  1.5 for cells cultured in 4 and 11 mM glucose respectively. Oscillations in secretion from cells cultured in 4 and 11 mM glucose in the same plate were not different in period but different in amplitude due in part to reduced insulin content. Oscillation in the phosphorylation patterns of acetyl-CoA carboxylase (ACC) and myristoylated alanine rich C kinase substrate (MARCKS) were measured in cells cultured in 4 mM glucose and both exhibited a peak in phosphorylation that occurred at the nadir of the insulin oscillation between peaks of insulin release. CONCLUSION: Insulin secretion from pancreatic ß-cells is affected by nutrient status as excess nutrients decrease the amplitude of oscillations in insulin release. The period of oscillations can also be affected. Oscillations in protein phosphorylation are consistent with both ACC and MARCKS contributing to normal GSIS. These initial studies provide evidence of the suitability of this model system to correlate oscillations in protein activity to exocytosis. Future studies focused on the effects of low and high glucose will potentially reveal new important therapeutic targets that may help prevent/reverse/ameliorate insulin hypersecretion leading to insulin resistance and T2D.
2

Monoacylglycerol, alpha/beta-hydrolase domain-6, and the regulation of insulin secretion and energy metabolism

Zhao, Shangang 08 1900 (has links)
Le cycle glycérolipides/acides gras libres (GL/FFA) est une voie métabolique clé qui relie le métabolisme du glucose et des acides gras et il est composé de deux processus métaboliques appelés lipogenèse et lipolyse. Le cycle GL/FFA, en particulier la lipolyse des triglycérides, génère diverses molécules de signalisation pour réguler la sécrétion d'insuline dans les cellules bêta pancréatiques et la thermogenèse non-frissonnante dans les adipocytes. Actuellement, les lipides provenant spécifiquement de la lipolyse impliqués dans ce processus sont mal connus. L’hydrolyse des triglycérides dans les cellules β est réalisée par les actions successives de la triglycéride lipase adipocytaire pour produire le diacylglycérol, ensuite par la lipase hormono-sensible pour produire le monoacylglycérol (MAG) et enfin par la MAG lipase (MAGL) qui relâche du glycerol et des acides gras. Dans les cellules bêta, la MAGL classique est très peu exprimée et cette étude a démontré que l’hydrolyse de MAG dans les cellules β est principalement réalisée par l'α/β-Hydrolase Domain-6 (ABHD6) nouvellement identifiée. L’inhibition d’ABHD6 par son inhibiteur spécifique WWL70, conduit à une accumulation des 1-MAG à longues chaines saturées à l'intérieur des cellules, accompagnée d’une augmentation de la sécrétion d'insuline stimulée par le glucose (GSIS). Baisser les niveaux de MAG en surexprimant ABHD6 dans la lignée cellulaire bêta INS832/13 réduit la GSIS, tandis qu’une augmentation des niveaux de MAG par le « knockdown » d’ABHD6 améliore la GSIS. L'exposition aiguë des monoacylglycérols exogènes stimule la sécrétion d'insuline de manière dose-dépendante et restaure la GSIS supprimée par un inhibiteur de lipases appelé orlistat. En outre, les souris avec une inactivation du gène ABHD6 dans tous les tissus (ABHD6-KO) et celles avec une inactivation du gène ABHD6 spécifiquement dans la cellule β présentent une GSIS stimulée, et leurs îlots montrent une augmentation de la production de monoacylglycérol et de la sécrétion d'insuline en réponse au glucose. L’inhibition d’ABHD6 chez les souris diabétiques (modèle induit par de faibles doses de streptozotocine) restaure la GSIS et améliore la tolérance au glucose. De plus, les résultats montrent que les MAGs non seulement améliorent la GSIS, mais potentialisent également la sécrétion d’insuline induite par les acides gras libres ainsi que la sécrétion d’insuline induite par divers agents et hormones, sans altération de l'oxydation et l'utilisation du glucose ainsi que l'oxydation des acides gras. Nous avons démontré que le MAG se lie à la protéine d’amorçage des vésicules appelée Munc13-1 et l’active, induisant ainsi l’exocytose de l'insuline. Sur la base de ces observations, nous proposons que le 1-MAG à chaines saturées agit comme facteur de couplage métabolique pour réguler la sécrétion d'insuline et que ABHD6 est un modulateur négatif de la sécrétion d'insuline. En plus de son rôle dans les cellules bêta, ABHD6 est également fortement exprimé dans les adipocytes et son niveau est augmenté avec l'obésité. Les souris dépourvues globalement d’ABHD6 et nourris avec une diète riche en gras (HFD) montrent une faible diminution de la prise alimentaire, une diminution du gain de poids corporel et de la glycémie à jeun et une amélioration de la tolérance au glucose et de la sensibilité à l'insuline et ont une activité locomotrice accrue. En outre, les souris ABHD6-KO affichent une augmentation de la dépense énergétique et de la thermogenèse induite par le froid. En conformité avec ceci, ces souris présentent des niveaux élevés d’UCP1 dans les adipocytes blancs et bruns, indiquant le brunissement des adipocytes blancs. Le phénotype de brunissement est reproduit dans les souris soit en les traitant de manière chronique avec WWL70 (inhibiteur d’ABHD6) ou des oligonucléotides anti-sense ciblant l’ABHD6. Les tissus adipeux blanc et brun isolés de souris ABHD6-KO montrent des niveaux très élevés de 1-MAG, mais pas de 2-MAG. L'augmentation des niveaux de MAG soit par administration exogène in vitro de 1-MAG ou par inhibition ou délétion génétique d’ABHD6 provoque le brunissement des adipocytes blancs. Une autre évidence indique que les 1-MAGs sont capables de transactiver PPARα et PPARγ et que l'effet de brunissement induit par WWL70 ou le MAG exogène est aboli par les antagonistes de PPARα et PPARγ. L’administration in vivo de l’antagoniste de PPARα GW6471 à des souris ABHD6-KO inverse partiellement les effets causés par l’inactivation du gène ABHD6 sur le gain de poids corporel, et abolit l’augmentation de la thermogenèse, le brunissement du tissu adipeux blanc et l'oxydation des acides gras dans le tissu adipeux brun. L’ensemble de ces observations indique que ABHD6 régule non seulement l’homéostasie de l'insuline et du glucose, mais aussi l'homéostasie énergétique et la fonction des tissus adipeux. Ainsi, 1-MAG agit non seulement comme un facteur de couplage métabolique pour réguler la sécrétion d'insuline en activant Munc13-1 dans les cellules bêta, mais régule aussi le brunissement des adipocytes blancs et améliore la fonction de la graisse brune par l'activation de PPARα et PPARγ. Ces résultats indiquent que ABHD6 est une cible prometteuse pour le développement de thérapies contre l'obésité, le diabète de type 2 et le syndrome métabolique. / The glycerolipid/ free fatty acid (GL/FFA) cycle is a key metabolic pathway that links glucose and fatty acid metabolism and it consists of lipogenesis and lipolysis. GL/FFA cycling, especially in its lipolysis arm, generates various lipid signaling molecules to regulate insulin secretion in pancreatic ß-cells and non-shivering thermogenesis in adipocytes. Currently, the lipolysis-derived lipid signals involved in this process are uncertain. Triglyceride hydrolysis in mammalian cells is accomplished by the sequential actions of adipose triglyceride lipase to produce diacylglycerol, by hormone sensitive lipase to produce monoacylglycerol (MAG) and by MAG lipase (MAGL) that releases free fatty acid and glycerol. Our work shows that in pancreatic ß-cell, the classical MAGL is poorly expressed and that MAG hydrolysis is mainly conducted by the newly identified α/β-Hydrolase Domain-6 (ABHD6). Inhibition of ABHD6 by its specific inhibitor WWL70, leads to long-chain saturated 1-MAG accumulation inside the cells, accompanied by enhanced glucose-stimulated insulin secretion (GSIS). Decreasing the MAG levels by overexpression of ABHD6 in the ß-cell line INS832/13 reduces GSIS, while increasing MAG levels by ABHD6 knockdown enhances GSIS. Acute exposure of INS832/13 cells to various MAG species dose-dependently stimulates insulin secretion and restores GSIS suppressed by the pan-lipase inhibitor orlistat. Also, various biochemical and pharmacological experiments show that saturated 1-MAG levels species rather than unsaturated or 2-MAG species best correlate with insulin secretion. Furthermore, whole-body and β-cell-specific ABHD6-KO mice exhibit enhanced GSIS in vivo, and their isolated islets show elevated MAG production and GSIS. Inhibition of ABHD6 in low dose streptozotocin diabetic mice restores GSIS and improves glucose tolerance. Results further show that ABHD6-accessible MAGs not only enhance GSIS, but also potentiate fatty acid and non-fuel-induced insulin secretion without alteration in glucose oxidation and utilization as well as fatty acid oxidation. We have identified that MAG binds and activates the vesicle priming protein Munc13-1, thereby inducing insulin exocytosis. Based on all these observations, we propose that lipolysis-derived saturated 1-MAG acts as a metabolic coupling factor to regulate insulin secretion and ABHD6 is a negative modulator of insulin secretion. Besides its role in ß-cells, ABHD6 is also highly expressed in adipocytes and its level is increased with obesity. Mice globally lacking ABHD6 on high fat diet (HFD) show modestly reduced food intake, decreased body weight gain, insulinemia and fasting glycemia and improved glucose tolerance and insulin sensitivity and enhanced locomotor activity. In addition, ABHD6-KO mice display increased energy expenditure and cold-induced thermogenesis. In accordance with this, these mice show elevated UCP1 level in white and brown adipocytes, indicating browning of white adipocytes. The browning phenotype is reproduced in the mice either chronically treated with the ABHD6 inhibitor WWL70 or an antisense oligonucleotides targeting ABHD6. White and brown adipose tissues isolated from whole body ABHD6 KO mice show greatly elevated levels of 1-MAG, but not 2-MAG. Increasing MAG levels by either exogenous administration of 1-MAG or ABHD6 inhibition or genetic deletion induces browning of white adipocytes in a cell-autonomous manner. Further evidence indicates that 1-MAGs can transactivate PPARα and PPARγ and the browning effect induced by WWL70 or exogenous MAG is abolished by PPARα and PPARγ antagonists. In vivo administration of the PPARα antagonist GW6471 to ABHD6 KO mice partially reversed the ABHD6-KO effects on body weight gain, and abolishes the enhanced thermogenesis, white adipose browning and fatty acid oxidation in brown adipose tissue. All these observations indicate that ABHD6 regulates not only insulin and glucose homeostasis but also energy homeostasis and adipose tissue function. Thus, ABHD6-accessible 1-MAG not only acts as a metabolic coupling factor to regulate fuel and non-fuel induced insulin secretion by activating Munc13-1 in beta cells, but also regulates glucose, insulin and energy homeostasis. The latter effects are mediated at least in part via browning of white adipocytes and enhanced brown fat function through the activation of PPARα and PPARγ. Collectively these findings suggest that ABHD6 is a promising target for developing therapeutics against obesity, type 2 diabetes and metabolic syndrome.

Page generated in 0.0559 seconds