• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 135
  • 109
  • 25
  • 23
  • 21
  • 10
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 559
  • 119
  • 101
  • 94
  • 94
  • 88
  • 86
  • 85
  • 76
  • 74
  • 69
  • 60
  • 58
  • 56
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Des comportements criminels et de leur dissuasion

Vaillant, Nicolas Kobielski, José. January 2005 (has links) (PDF)
Thèse doctorat : Sciences économiques : Reims : 2004. / Titre provenant du cadre-titre. Bibliogr.182-209 f. Index.
12

Controlling cracking in precast prestressed concrete panels

Azimov, Umid 29 October 2012 (has links)
Precast, prestressed concrete panels (PCPs) have been widely used in Texas as stay-in-place formwork in bridge deck construction. Although PCPs are widely popular and extensively used, Texas is experiencing problems with collinear cracks (cracks along the strands) in panels. One reason for the formation of collinear cracks is thought to be the required level of initial prestress. Currently, PCPs are designed assuming a 45-ksi, lump-sum prestress loss. If the prestress losses are demonstrated to be lower than this value, this could justify the use of a lower initial prestress, probably resulting in fewer collinear cracks. For this purpose, 20 precast, prestressed panels were cast at two different plants. Half of those 20 panels were fabricated with the current TxDOT-required prestress of 16.1 kips per strand, and the other half were fabricated with a lower prestress of 14.4 kips per strand based on initially observed prestress losses of 25 ksi or less. Thirteen of those panels were instrumented with strain gages and monitored over their life time. Observed losses stabilized after five months, and are found to be about 24.4 ksi. Even with the reduced initial prestress, the remaining prestress in all panels exceeds the value now assumed by TxDOT for design. / text
13

Response of laser welded sandwich panels subject to initial velocity /

Baskiyar, Rajeev, January 2007 (has links)
Thesis (M.S.) in Mechanical Engineering--University of Maine, 2007. / Includes vita. Includes bibliographical references (leaves 97-98).
14

Geometric estimation of strains in car body panels

Heap, Graham Stewart January 1988 (has links)
The thesis focuses on the manufacture of car body panels at Austin Rover and in particular the phenomenon of spring-back. After pressing of a shallow drawn panel its shape is often flatter than required. This loss of shape control corresponds to areas of small strains. The aim of the thesis is to describe the generation of a database of small strain information at discrete points on a drawn panel, which could be used in the numerical modelling of the drawing process.
15

Passive solar-energy air-heating wall panels

Hobday, R. A. January 1987 (has links)
The development of products which enable passive solar-energy air-heating to be integrated into the heating strategies of public, commercial and industrial buildings is described. These buildings are, in general, only occupied significantly during the day; consequently the bulk of heating demand coincides with the period of solar gain. In these circumstances collected solar heat should be delivered with the minimum of delay. The design and operation of units which are capable of supplying solar heated air in this manner is outlined. These are passive, naturalcirculation air-heating collectors, also known as natural-convection air-heaters, or thermosyphoning air panels. Four methods of retrofitting such solar collectors to non-domestic buildings have been identified, one of which, the overcladding collector, has not been proposed previously. Problems associated with the successful installation and operation of these units have also been considered. The relative merits of a number of methods of testing passive solarenergy air-heating collectors have been investigated. A method of determining instantaneous collector efficiency based on the measurement of glazing temperature, inlet and outlet air temperature, ambient temperature and insolation has been developed. Three novel design proposals have been presented: i) a collector constructed with the insulation fitted outside, rather than inside, so that the metal body of the collector may provide more symmetrical heating of the air flow than the conventional arrangement, ii) an absorber which consisted of parallel ducts to increase the rate of heat transfer to the air, heating it symmetrically, (iii) a hinged air-deflector for conversion from the heating to the ventilation mode.
16

Thermal Analysis and Response of Grid-Stiffened Composite Panels

Uzman, Burak Jr. 26 January 1998 (has links)
A study aimed at determining the thermal deformation response and thermal buckling loads of rectangular grid-stiffened composite panels is presented. Two edge conditions are considered for the panel, one in which all panel edges are free to deform, and another when all the edges are restrained. In the first case panel deformations due to a uniformly distributed thermal load are analyzed. In the latter case, thermal loads causing buckling failure due to the suppressed in-plane deformations are determined. The panel is composed of a skin and a network of stiffeners, which are all made of the same graphite-epoxy composite material. Kirchhoff's Theory is used to determine the pre-buckling deformations and load distributions of the composite laminates for a panel with free to deform edges. To illustrate both the in-plane and out-of-plane deformations of plate structures under uniform thermal loads, two thermal coefficient vectors, thermal expansion and thermal bending coefficient vectors are introduced. Linear panel buckling analysis performed by assuming a linear undeformed prebuckling state. Rayleigh-Ritz Method, which utilizes minimization of the total energy of a structure to determine the buckling loads, is used to govern the buckling analysis of composite laminates forming the panel. Lagrange Multiplier Method is used along with the Rayleigh-Ritz Method to enforce the deformation continuity constraints at discrete locations along the skin and stiffener interface. As a result, graphical and numerical presentations of the effects of skin and stiffener laminate stacking sequences on the thermal deformations and on the thermal buckling load of the grid-stiffened panel are given. / Master of Science
17

Controlling cracking in prestressed concrete panels

Foreman, James Michael 25 October 2010 (has links)
Precast, prestressed concrete panels (PCPs) are used in 85% of bridges in Texas. The goal of this thesis is to reduce collinear cracking (cracks propagating parallel to strands) in PCPs. One way to reduce collinear cracking would be to reduce the initial prestress force. In design, TxDOT conservatively assumes total prestress losses of 45 ksi. Based on eight panel specimens, instrumented and fabricated at two different precast plants in Texas, actual prestress losses were measured as at most 25 ksi. This difference (about 20 ksi) is consistent with a reduction in initial prestress force from 16.1 kips per strand to 14.4 kips per strand. Another way to reduce collinear cracking would be to provide additional transverse reinforcement in the end regions of the panels. By comparing crack spacings and crack widths in current and modified panel specimens, it was found that additional reinforcement consisting of one or two #3 bars placed transverse to strands at panel ends would effectively control collinear cracking in PCPs. / text
18

A finite element study of the postbuckling behaviour of a typical aircraft fuselage panel

Lynch, Colum James January 2000 (has links)
No description available.
19

Load-response and the effect of de-bonding on structural insulated panels performance

Delijani, Farhoud 21 June 2016 (has links)
Series of full-scale tests were conducted on polyurethane foam-core Structural Insulated Panels (PUR SIPs) to study the load response and creep behavior of such panels. The load response of PUR SIPs was compared with conventional stud wall panels. The effects of de-bonding between the foam-core and the OSB face-sheets were also studied to understand the effects of such change on the overall performance of PUR SIPs. At last, computer modelling was employed to simulate and predict the behavior of PUR SIPs in different loading orientations and dis-bond ratios. It was found that PUR SIPs can outperform conventional stud-wall panels in every aspect. In the case of 165 mm (6.5 in.) thick PUR SIPs, 33% dis-bond between the PUR foam-core and the OSB face-sheets caused an average of 64% reduction in ‘axial load’ capacity, an average of 75.8% reduction in ‘transverse load’ capacity, and an average of 7.9% reduction in ‘racking load’ capacity of the panels compared to brand new fully-bonded SIPs. It was also found that 33% dis-bond in 165 mm (6.5 in.) thick PUR SIPs has minimal effect on the racking load capacity of the panels. In the case of 114 mm (4.5 in.) thick PUR SIPs, 33% dis-bond be-tween the PUR foam-core and the OSB face-sheets caused an average of 63.3% reduction in ‘axial load’ capacity, an average of 79% reduction in ‘transverse load’ capacity, and an average of 29% increase in ‘racking load’ capacity of the panels compared to brand new fully-bonded SIPs. All tested panels satisfied the code requirements for the creep deflections (span/180) and they fully rebounded to their initial estate, 90 days after removal of the simulated snow loads. It was also found that weathering has minimal effect on the bond between the face-sheets and the PUR foam. After computer simulations of fully-bonded and dis-bonded PUR SIPs in two different thicknesses, it was found that SOLIDWORKS simulation software is a useful tool to predict the load response of PUR SIPs only when fully-bonded panels are exposed to transverse load orientation regardless of the thickness of the panel. In general, available Canadian and American standards were followed in this study. Where applicable, standards were adopted from other material testing methods for testing PUR SIPs. It is believed that this independent research has addressed most frequently ex-pressed concerns regarding the use and application of structural insulated panels such as de-bonding issues and creep behavior and their relationship to durability. The hope is that is research help increase the use and application of SIPs in green, high-performance, light-frame building construction in Canada. / October 2016
20

Least square parabola applied to buckling of concrete plates

Merchant, Anwar A January 2010 (has links)
Digitized by Kansas Correctional Industries / Department: Civil Engineering.

Page generated in 0.0232 seconds