• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 135
  • 109
  • 25
  • 23
  • 21
  • 10
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 559
  • 119
  • 101
  • 94
  • 94
  • 88
  • 86
  • 85
  • 76
  • 74
  • 69
  • 60
  • 58
  • 56
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The influence of novel forming techniques on the properties of medium density fibreboard

Gillah, Peter Reuben January 2000 (has links)
No description available.
32

An experimental investigation of the behaviour of connections in thin precast concrete panels under earthquake loading

Kallros, Mikael Kaj January 1987 (has links)
Investigations of connections for precast concrete panel buildings have shown that it is difficult to design an embedded connection that will perform well under earthquake loading. Some typical connections use studs or reinforcing bars embedded in the edge of the panel. These are then welded or bolted to an adjacent panel. During earthquake loading the crushing of concrete around the embedment usually leads to premature loss of strength and stiffness of the connection before significant ductility can develop. It has been found that connection performance improves with increasing panel thickness. The behaviour of embedded connections in thin precast concrete panels was investigated. The intent was to improve connection design details and to develop a simple method of predicting connection strengths with panel thicknesses of 50 mm to 75 mm. Sixteen connections of six different types were tested. Three were tested monotonically and thirteen were tested under reversed cyclic loading. Certain types of connections can be used to transfer earthquake loads between thin concrete panels as long as they have adequate strength. Methods for predicting the strength of connections are discussed. The connections tested should not be relied on to develop ductility. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
33

Bygga smakbroar : En jämförelsestudie mellan en expertpanel och en konsumentpanel / A comparative study between an expert panel and a consumer panel.

Pusterli, Johanna, Rosin, Tilly January 2023 (has links)
No description available.
34

Development of a Global/Local Approach and a Geometrically Non-linear Local Panel Analysis for Structural Design

Ragon, Scott Alan II 10 October 1998 (has links)
A computationally efficient analysis capability for the geometrically non-linear response of compressively loaded prismatic plate structures was developed. Both a "full" finite strip solution procedure and a "reduced" solution procedure were implemented in a FORTRAN 90 computer code, and comparisons were made with results available in the technical literature. Both the full and reduced solution procedures were demonstrated to provide accurate results for displacement and strain quantities through moderately large post-buckling loads. The full method is a non-linear finite strip analysis of the semi-analytical, multi-term type. Individual finite strips are modeled as balanced and symmetric laminated composite materials which are assumed to behave orthotropically in bending, and the structure is loaded in uniaxial or biaxial compression. The loaded ends of the structure are assumed to be simply supported, and geometric shape imperfections may be modeled. The reduced solution method makes use of a reduced basis technique in conjunction with the full finite strip analysis. Here, the potentially large set of non-linear algebraic equations produced by the finite strip method are replaced by a small set of system equations. In the present implementation, the basis vectors consist of successive derivatives of the non-linear solution vector with respect to a loading parameter. Depending on the nature of the problem, the reduced solution procedure is capable of computational savings of up to 60%+ compared to the full finite strip method. The reduced method is most effective in reducing the computational cost of the full method when the most significant portion of the cost of the full method is factorization of the assembled system matrices. The robustness and efficiency of the reduced solution procedure was found to be sensitive to the user specified error norm which is used during the reduced solution procedure to determine when to generate new sets of basis vectors. In parallel with this effort, a new method for performing global/local design optimization of large complex structures (such as aircraft wings or fuselages) was developed. A simple and flexible interface between the global and local design levels was constructed using response surface methodology. The interface is constructed so as to minimize the changes required in either the global design code or the local design codes(s). Proper coupling is maintained between the global and local design levels via a "weight constraint" and the transfer of global stiffness information to the local level. The method was verified using a simple isotropic global wing model and the local panel design code PASCO. / Ph. D.
35

A Self Portrait: "The Embassy of Chile"

Lobos, Victor Andres 31 March 2005 (has links)
Washington D.C. is a city of multicultural richness difficult to surpass. The huge diversity of languages, cultures, and people found in the city are the bases of its identity. Countless diplomatic missions, international organizations and agencies are a dramatic proof that Washington D.C. is currently the center of the world, the Rome of modern times. To this extent, each country that holds a diplomatic mission strives to make its representation, its presence to the host country, as good as possible. With this in mind, architecture is provided with a great opportunity to showcase the spirit of each country through the buildings that represent them, their embassies. The desire that sparked the idea of making a thesis about the Embassy of Chile may be traced to the experience of being a foreigner, a Chilean, living in Washington D.C. In the same manner that a person may represent its country, an embassy building gives the opportunity to express and show a lot of what that country is about; it has the potential of becoming a symbol for it. Although this may seem a very straightforward theme, it's actually very broad, and may be regarded in a number of ways. How do we represent Chile? What do we show? What don't we want to show? How do we express it? And even how can we define Chile. These were questions that had to be addressed before even thinking about designing the embassy. In order to this, the concept that had to be adopted had to be capable of handling this selective process. It's a process in which the person doing the representation also takes part in it. In other words, it's a process by which you are presenting yourself. Through research done at this stage of the thesis, the best way to describe the procedure was by making a Self Portrait. By adopting this concept we were given the possibility to create our own image of what Chile was, and to reveal and conceal whatever we thought was appropriate. / Master of Architecture
36

Monotonic and Cyclic Performance of Structurally Insulated Panel Shear Walls

Jamison, Jared Bernard Jr. 22 December 1997 (has links)
The majority of residential construction and a significant portion of light commercial and industrial construction has been, and will continue to be light-framed timber construction. In recent years, innovations have surfaced to improve upon light-framed construction. Structurally insulated panels (SIPS) are gaining popularity due to their superior energy efficiency and ease of construction. Light-framed timber construction has proven to be trustworthy in high-wind and seismic regions due to its lightweight construction and numerous redundancies. Shear walls, along with floor and roof diaphragms, resist lateral loads in a timber structure. In the past, research has focused on the static racking performance of light-framed shear walls. More recently, research has been focused on the cyclic and dynamic performance of shear walls. To the author's knowledge, no other research is reported in the literature on the cyclic performance of SIPS shear walls. It is important to understand and quantify the monotonic and cyclic response of shear walls. In this study, twenty-three full-scale shear walls were tested under monotonic loading and sequential phased displacement cyclic loading. Four different wall configurations were examined. Monotonic and cyclic performance of the shear walls and monotonic and cyclic testing procedures are compared. Response of SIPS shear walls is also compared to the response of light-framed shear walls based on capacity, stiffness, ductility, energy dissipation, damping characteristics, and overall behavior. Results of this study will provide useful information regarding the performance of SIPS shear walls and similar systems subjected to static, cyclic, and dynamic lateral loads. / Master of Science
37

Horizontal Shear Connectors for Precast Prestressed Bridge Decks

Menkulasi, Fatmir 26 August 2002 (has links)
The full-width, full-depth precast panel system is very convenient for rehabilitation of deteriorated decks as well as for new bridge construction. The horizontal shear strength at the interface between the two interconnected elements is of primary importance in order to provide composite action. The strength of the bond between the two precast members should be high enough to prevent any progressive slip from taking place. Flexural strength, shear strength and deflection characteristics all depend on the satisfactory performance of the interface to provide composite action. However, the case when both of the interconnected elements are precast members bonded by means of grout, is not currently addressed by ACI or AASHTO. This is the main impetus for this project. A total of 36 push-off tests were performed to develop a method for quantifying horizontal shear strength and to recommend the best practice for the system. Test parameters included different haunch heights, different grout types, different amount and different type of shear connectors. Two equations, for uncracked and cracked concrete interfaces, are proposed to be used in horizontal shear design when the precast panels are used. Predictive equations are compared with available methods for the horizontal shear strength of the precast panel system. Conclusions and recommendations for the optimum system are made. / Master of Science
38

Analysis of assumptions made in design of reinforcement in Slender Reinforced Concrete (Tilt-Up) panels with openings

Schwabauer, Brandon January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / This report uses and references (Analysis of Vertical Reinforcement in Slender Reinforced Concrete (Tilt-up) Panels with Openings & Subject to Varying Wind Pressures) (Bartels, 2010) to investigate the design philosophy and assumptions used in Section 14.8 of the ACI 318-08 (ACI Committee 318, 2008). The design philosophy and assumptions are analyzed to determine the applicability and accuracy of Section 14.8 of the ACI 318-08 (ACI Committee 318, 2008) to the design and analysis of slender concrete panels with openings. Special emphasis is placed on identifying and quantifying the degree of effect that each assumption has on the final design of the panel. These topics include stress distribution around openings, the effect of varying stiffness of the member on the P-delta effect, stiffness variations due to workmanship and tolerances, and the effect of axial load on the stiffness of the member. This is accomplished through the use of specially designed computer analyses that isolate an assumption or effect to determine its impact on the final design. This study shows that two-way effects are almost non-existant, the portion of the panel above the opening has very little effect on the P-delta effects, the code specified reduction in bending stiffness due to workmanship and tolerances appear to be appropriate, and the effective area of reinforcement overestimates the stiffness of the panel.
39

Optimising the output power available from a photovoltaic panel through empirical testing

Osamede, Asowata 09 1900 (has links)
M. Tech. (Department of Electronic Engineering, Faculty of Engineering and Technology) -- Vaal University of Technology / Einstein said, ‘‘the release of energy has not created a new problem, but has made more urgent the necessity of solving an existing one’’. This dissertation presents a method of optimising the available output power from a photovoltaic (PV) panel through empirical testing as this will enable a higher yield of solar energy thereby reducing dependence on traditional energy sources such as fossil fuels. The proposed study intends using existing equations of latitude, mathematical models and simulation packages in combination with the experimental data to analyse the optimum tilt and orientation angles for PV panels. This will assist in identifying ways to improve the installation of PV panels for optimum output power in the Vaal Triangle. Photovoltaic panels are semiconductor devices that convert incident direct beam radiation to electrical energy and the panel is composed of several unitary cells connected in series and/or in parallel. The optimisation process involves the empirical testing of the entire system with the use of existing equations of latitude as suggested by literature for PV installation in the southern hemisphere, power conditioning devices (such as an DC-DC converter, solar charger with MPPT) in order to validate results as well as the correlation of empirical results with a simulation package. The first objective was to have an overview of the types of PV panels that exist; this was done in order to be able to make a right choice of PV panel to be used in this research. A concise literature review was carried to enable this research to have a background of existing information in the areas of optimisation of power from PV panels. The next objective was to carry out a pilot study, this was done to form the foundation for the main study. A data-logging interface circuit (DLIC) was incorporated in the system for some reasons presented in subsequent chapters of this dissertation. At the end of this study data were taken over a two year period, the data were analysed and conclusions were drawn and some recommendation in optimising available output power from a PV panel are suggested. / Vaal University of Technology, Telkom South Africa Ltd, TFMC Pty LTD, M-TEC and THRIP
40

Innovative daylighting systems for deep-plan commercial buildings

Garcia-Hansen, Veronica Ruth January 2006 (has links)
The use of natural light is very beneficial in office buildings because energy consumption can be reduced, and working conditions can be enhanced, which positively affect workers' health and productivity. However, bringing natural light into deep plan office buildings is not possible with simple windows or skylights, and light transport systems are necessary to bring natural light into the deep cores of buildings. Light transport systems usually need sun-tracking devices to collect natural light that are complicated, expensive and require continual maintenance. Mirrored light pipes coupled with laser cut panels (LCP) are a passive and simpler daylight transport solution and are the focus of this PhD research. The primary aim has been to improve the technology and achieve the most efficient passive solution possible through the interactive use of theoretical modelling, experimental measurements and case studies. Applications of this technology were investigated in two case studies: 1) as horizontal light pipes for daylight illumination of a high rise building proposal in the tropics; and 2) as vertical light pipes for daylight illumination of a middle-rise deep plan building proposal in a subtropical environment. In both cases, quantitative system performance under best (clear sunny sky) and worst (overcast) case scenarios was undertaken via scale model testing and mathematical modelling. The major conclusion for both case studies was that mirrored light pipe technologies, when coupled with LCP, were effective in introducing sufficient ambient light levels inside buildings and over distances > 20 m from the façade or roof. Average lux levels achieved in the space were 150 to 350 lux for the horizontal light pipes and 50 to 300 lux for vertical light pipes. However, as a passive solution, this technology has two major limitations: 1) the dependence on sun azimuth and elevation angles, which result in variations in illuminance levels during the day and the year; and potentially 2) pipe size, as pipes with a large diameter (e.g. 2 m in diameter for 20 m long pipes) are required for optimal performance, such that the large pipes may limit integration in building design. Two other solutions were assessed to circumvent these limitations to the mirrored light pipe technology: 1) a passive collector that concentrate natural light by using a fluorescent panel to reduce the size of the pipe, and 2) an active collector comprising a LCP rotating 360 degrees in a 24 hour cycle to reduce system dependence on sun azimuth and elevation angles. The low light-to-light efficiency of the fluorescent panels made them inappropriate for collecting sufficient amounts of daylight necessary for daylighting of large buildings. In contrast, the rotating LCP is a very simple active system that by rotating constantly at 15 degrees per hour, reduces the deviation angle between the panel orientation and sun azimuth angle, and significantly increased the system performance. The performance was generally better (e.g. 2.5 times better for light collection under low sun elevation angles) than the passive light pipe system with fixed LCP. However, active systems raise other issues in terms of cost-benefit in constructing, operating and maintaining such systems. Passive mirrored light pipes coupled with LCPs or simple active systems with rotating LCPs have great potential as daylight solutions for deep plan buildings as they can contribute to lowering overall energy consumption, improve workplace health and become an architectural design element. Research is still required on the implementation of the technology into buildings, but the growing trend towards 'green buildings', sustainable design and government regulations or building codes will require more daylighting use in buildings, and will motivate designers to increasingly consider and incorporate such daylighting strategies into future building designs.

Page generated in 0.0206 seconds