• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 15
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 25
  • 18
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Modellierung und Simulation des Systemverhaltens nasslaufender Lamellenkupplungen

Rao, Guang 16 September 2011 (has links)
Nasslaufende Lamellenkupplungen finden im Automobil immer mehr Anwendungen. Im Bezug auf die steigenden Motorleistungen, die Gewichtsoptimierungsmaßnamen und die hohen Ansprüche an Fahrdynamik nimmt die geforderte Leistungsdichte einer nasslaufenden Lamellenkupplung ständig zu. Die Lamellenkupplung wird oft nahe an ihrer Belastungsgrenze ausgelegt. Außerdem wachsen gleichzeitig die Anforderungen an ihre Schaltdynamik, das Komfortverhalten und die Lebensdauer. Schwerpunkt dieser Arbeit ist die Modellierung und Simulation von Reibung und Verschleiß nasslaufender Lamellenkupplungen, insbesondere der mit dem Papierreibbelag. Ein umfassendes Verständnis für die Reibungsvorgänge und Verschleißmechanismen stellt die Grundvoraussetzung für eine optimale Entwicklung der nasslaufenden Lamellenkupplung dar. Zur Lösung der gestellten Aufgabe werden die wichtigsten Einflussgrößen auf das tribolgische System der Lamellenkupplung charakterisiert und die Wirkungen der tribologischen Beanspruchungsgrößen identifiziert. Zudem werden verschiedene Simulationsmodelle mit unterschiedlicher Modellierungstiefe erstellt. Dazu gehören Reibmodelle, Wärmeflussmodelle sowie Lebensdauermodelle, wobei die Reib- und Wärmeflussmodelle für die Lebensdauermodelle benötigt werden. Die hergeleiteten Modelle werden in die Simulationsumgebung implementiert und mit Hilfe eines Prüfstandsversuches verifiziert. Die validierten Modelle können für die Systemoptimierung und die Lebensdauerabsicherung der nasslaufenden Lamellenkupplungen effizient eingesetzt werden. Dies kann eine deutliche Reduktion der Entwicklungszeit sowie der Versuchskosten ermöglichen.
82

Paper-based lithium-Ion batteries using carbon nanotube-coated wood microfiber current collectors

Aliahmad, Nojan 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The prevalent applications of energy storage devices have incited wide-spread efforts on production of thin, flexible, and light-weight lithium-ion batteries. In this work, lithium-ion batteries using novel flexible paper-based current collectors have been developed. The paper-based current collectors were fabricated from carbon nanotube (CNT)-coated wood microfibers (CNT-microfiber paper). This thesis presents the fabrication of the CNT-microfiber paper using wood microfibers, coating electrode materials, design and assemblies of battery, testing methodologies, and experimental results and analyses. Wood microfibers were coated with carbon nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) through an electrostatic layer-by-layer nanoassembely process and formed into a sheet, CNT-microfiber paper. The CNT loading of the fabricated paper was measured 10.1 μg/cm2 subsequently considered. Electrode material solutions were spray-coated on the CNT-microfiber paper to produce electrodes for the half and full-cell devices. The CNT current collector consists of a network structure of cellulose microfibers at the micro-scale, with micro-pores filled with the applied conductive electrode materials reducing the overall internal resistance for the cell. A bending test revealed that the paper-based electrodes, compared to metal ones, incurred fewer damages after 20 bends at an angle of 300o. The surface fractures on the paper-based electrodes were shallow and contained than metallic-based electrodes. The micro-pores in CNT-microfiber paper structure provides better adherence to the active material layer to the substrate and inhibits detachment while bending. Half-cells and full-cells using lithium cobalt oxide (LCO), lithium titanium oxide (LTO), and lithium magnesium oxide (LMO) were fabricated and tested. Coin cell assembly and liquid electrolyte was used. The capacities of half-cells were measured 150 mAh/g with LCO, 158 mAh/g with LTO, and 130 mAh/g with LMO. The capacity of the LTO/LCO full-cell also was measured 126 mAh/g at C/5 rate. The columbic efficiency of the LTO/LCO full-cell was measured 84% for the first charging cycle that increased to 96% after second cycle. The self-discharge test of the full-cell after charging to 2.7 V at C/5 current rate is showed a stable 2 V after 90 hours. The capacities of the developed batteries at lower currents are comparable to the metallic electrode-based devices, however, the capacities were observed to drop at higher currents. This makes the developed paper-based batteries more suitable for low current applications, such as, RFID tags, flexible electronics, bioassays, and displays. The capacities of the batteries at higher current can be improved by enhancing the conductivity of the fibers, which is identified as the future work. Furthermore, fabrication of an all solid state battery using solid electrolyte is also identified as the future work of this project.
83

STRATEGIES TO FACILITATE EVIDENCE-INFORMED AND PARTICIPATORY HEALTH POLICY MAKING IN ETHIOPIA

Gurmu, Kassu January 2020 (has links)
Evidence-informed health policy making contributes to improved health outcomes by strengthening health systems. In addition, health policy decisions should take into consideration the needs and priorities of users of healthcare services. However, little research has been done to find best ways to facilitate evidence-informed and participatory health policymaking, particularly in low- and middle-income countries. This thesis is written based on three studies done in Ethiopia to fill this knowledge gap. In the first study, we examined whether, how and under what conditions evidence was used and service-users participated during the agenda-setting and policy formulation phases of selected policies in the ‘prevention of mother-to-child transmission of HIV’ program in Ethiopia using a multiple-case study design. In the second study, we identified strategies to facilitate evidence-informed health policy making using an online survey. In the third study, we identified strategies to facilitate participatory health policy making using a combined paper-based and Internet-based Delphi approach. The thesis does not have direct theoretical contribution. However, it will draw on two theoretical frameworks, namely Kingdon’s framework and the 3I+E framework. and use them in a setting from where they were originally developed. This thesis has two substantive and three methodological contributions. Substantively, the first study provides empirical evidence about the current practice of evidence-informed and participatory health policy making in a low-income, ‘revolutionary’ democratic country (Ethiopia). In addition, the studies have identified strategies to concretize the constitutional and policy provisions for evidence-informed and participatory health policy making in Ethiopia. The thesis has the following three methodological contributions. First, the studies explored the use of Kingdon’s multiple-streams framework and the 3I+E framework in predicting factors influencing agenda-setting and policy formulation phases, respectively, and in explaining the use of research evidence in informing these two phases in a ‘revolutionary’ democratic country where they have not previously been used. Second, the thesis has shown that paper-based and Internet-based Delphi could be combined in contexts with limited resources. Third, the thesis has demonstrated the possibility of training service-users as ‘peer’ researchers to collect and analyze data to inform their participation and maximize their contribution in surveys, forming a pyramid of participation. / Thesis / Doctor of Philosophy (PhD) / Evidence-informed health policy making can contribute to improved health outcomes by strengthening health systems. In addition, health policy decisions ultimately affect users of healthcare services. Thus, such decisions should take into consideration their needs and priorities. However, little research has been done to find best ways to facilitate evidence-informed and participatory health policymaking, particularly in low- and middle-income countries. This thesis is written based on three studies done in Ethiopia. In the first study, we examined whether, how and under what conditions evidence was used and service-users participated in the ‘prevention of mother-to-child transmission of HIV’ program in Ethiopia. In the second and third studies, we identified strategies to facilitate evidence-informed and participatory health policy making. In addition, we explored the possibility of combining Internet- and paper-based methods for consensus-building among policymakers, program managers, researchers, healthcare providers and service-users in settings with limited resources.
84

Devices for On-Field Quantification of <i>Bacteroidales </i>for Risk Assessment in Fresh Produce Operations

Ashley Deniz Kayabasi (19194448) 23 July 2024 (has links)
<p dir="ltr">The necessity for on-farm, point-of-need (PON) nucleic acid amplification tests (NAATs) arises from the prolonged turnaround times and high costs associated with traditional laboratory equipment. This thesis aims to address these challenges by developing devices and a user-interface application designed for the efficient, accurate, and rapid detection of <i>Bacteroidales</i> as an indicator of fecal contamination on fresh produce farms.</p><p dir="ltr">In pursuit of this, I collaborated with lab members to engineer a Field-Applicable Rapid Microbial Loop-mediated isothermal Amplification Platform, FARM-LAMP. This device is portable (164 x 135 x 193 mm), energy-efficient (operating under 20 W), achieves the target 65°C with ± 0.2°C fluctuations, and is compatible with paper-based biosensors for loop-mediated isothermal amplification (LAMP). Subsequently, I led the fabrication of the microfluidic Field-Applicable Sampling Tool, FAST, designed to deliver high-throughput (10 samples per device), equal flow-splitting of fluids to paper-based biosensors, eliminating the need for a laboratory or extensive training. FARM-LAMP achieved 100% concordance with standard lab-based tests when deployed on a commercial lettuce farm and FAST achieved an average accuracy of 89% in equal flow-splitting and 70% in volume hydration.</p><p dir="ltr">A crucial aspect of device development is ensuring that results are easily interpretable by users. To this end, I developed a Python-based image analysis codebase to quantify sample positivity for fecal contamination, ranging from 0% (no contamination) to nearly 100% (definite contamination) and the concentration of field samples. It utilizes calculus-based mathematics, such as first and second derivative analysis, and incorporates image analysis techniques, including hue, saturation, and value (HSV) binning to a sigmoid function, along with contrast limited adaptive histogram equalization (CLAHE). Additionally, I developed a preliminary graphical user interface in Python that defines a prediction model for the concentration of <i>Bacteroidales</i> based on local weather patterns.</p><p dir="ltr">This thesis encompasses hardware development for on-field quantification and the creation of a preliminary user-interface application to assess fecal contamination risk on fresh produce farms. Integrating these devices with a user-interface application allows for rapid interpretation of results on-farm, aiding in the effective development of strategies to ensure safety in fresh produce operations.</p>
85

Vlastními slovy studentů a podle výsledků estů: Smíšený výzkum porovnávající dva způsoby adminisrace testů / Vlastními slovy studentů a podle výsledků estů: Smíšený výzkum porovnávající dva způsoby adminisrace testů

Nepivodová, Linda January 2018 (has links)
No description available.
86

SCALABLE MANUFACTURING OF PRINTED APTASENSORS: DETECTION OF FOODBORNE PATHOGENS AND ENVIRONMENTAL CONTAMINANTS

Lixby Susana Diaz (8464110) 21 June 2022 (has links)
<p>The development of low-cost, and reliable platforms for on-site detection of pathogenic agents, and toxic environmental traces is still a critical need for real-time monitoring of potential environmental pollution and imminent outbreaks. The biosensors market is projected to attain 31.5 billion by 2024. In this landscape, colorimetric and electrochemical devices continue to have significant relevance, with paper-based platforms leading the point-of-care (POC) segment for pathogen detection and environmental monitoring.</p> <p>Despite the true potential of biosensors in general, they have witnessed a slow rate in commercialization, mainly due to cost restrictions, and concerns related to their reliability and repeatability once scaled-up. This research evaluates the implementation of printing techniques as a strong approach for the fabrication of paper-based and flexible electrochemical biosensors. The results obtained demonstrated the ability to control and predict the variables affecting the sensing performance, achieving high precision of the printing parameters, and allowing optimization, and iterations since very early stages of prototype development.</p> <p>Besides the novel fabrication approach, this work introduces the use of truncated aptameric DNA sequences for whole cell detection of E. coli O157:H7 and heavy metals (Hg2+ and As3+), providing evidence of high stability and robustness under harsh conditions. Results obtained demonstrate their equal or even superior performance when compared to antibodies.</p> <p>We established the use of aptamer-functionalized multilayered label particles (PEI-grafted gold decorated polystyrene) with high stability as label particles. These particles address the well known drawback of non-selective aggregation typical of traditional naked Gold nanoparticles. The outstanding stability of these multilayered labels was demonstrated when used in an enhanced version of the lateral flow assay for detection of E. coli O157:H7 (state of the art for paper-based colorimetric detection of whole cell bacteria), and in a multiplexed paper-based microfluidic device for dual detection of Mercury and Arsenic. This work sets the foundation of the development of a next generation of health care and environmental monitoring devices that are portable, sensitive, quantitative, and can reliably detect multiple targets with one single test.</p>

Page generated in 0.0552 seconds