• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 13
  • 13
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On the Adhesion Between Substrates Covered with Polyelectrolyte Multilayers

Lingström, Rikard January 2008 (has links)
This thesis examines the formation of Polyelectrolyte Multilayers (PEM) on cellulose fibres as a new way of influencing the fibre surface and the adhesion between wood fibres. The aim of the study was to enhance the fundamental understanding of the adsorption mechanisms behind the formation of Polyelectrolyte Multilayers on cellulose fibres; to study how the properties of the layers can be influenced and to show how the properties of the layers influence the adhesion between the fibres and the strength of paper sheets made from the PEM treated fibres. Different polyelectrolyte systems are known to form PEMs with different properties, and in this work two different polymer systems were extensively studied: poly(dimethyldiallylammonium chloride) (PDADMAC) / poly(styrene sulphonate) (PSS), which are both strong polylectrolytes (i.e. are highly charged over a wide range of pH) and poly allylaminehydrochloride (PAH) /poly acrylic acid (PAA), which are both weak polyelectorlytes (i.e. sensitive to pH changes). PEMs were also formed from PAH/ poly(3,4-ethylenedioxythiophene):PSS (PEDOT:PSS), in order to form electrically conducting PEMs on fibres and PEM-like structures were formed from polyethylene oxide (PEO) and polyacrylic acid (PAA). In order to study the influence of the PEM on adhesion and paper strength, fibres were treated and used to form sheets which were physically tested according to determine the tensile index and strain at break. Both these systems were studied using different molecular mass fractions. High molecular mass PDADMAC/PSS (>500k/1000k) had a significantly greater influence as a function of the number of layers than low molecular mass PDADMAC/PSS (30k/80k). In contrast, sheets made from high molecular mass PAH/PAA (70k/240k) showed a significantly lower increase in strength than sheets made from low molecular PAH/PAA investigated earlier. Both these systems had a greater influence on paper strength when the cationic polyelectrolyte was adsorbed in the outermost layer. The amount of polyelectrolytes adsorbed on the fibres was determined using polylectrolyte titration (PET) and destructive analytical methods. Adsorption to model surfaces of silicon oxide was studied before the adsorption on fibres, in order to understand the influence on PEM properties of parameters such as salt concentration and adsorption time. Adhesion studies of surfaces coated with PAH/PAA using AFM, showed an increase in adhesion as a function of the number of adsorbed layers. The adhesion was higher when PAH was adsorbed in the outermost layers. Individual fibres were also partly treated using a Dynamic Contact Angle analyser (DCA) and were studied with regard to their wettability. In general, the wettability was lower when the cationic polymer was outermost. The level of adhesion and paper strength are discussed in terms of rigidity and wettability and the PEMs demonstrating a large number of free chain ends, a large chain mobility and a low wettability was found to have the greatest influence to adhesion and paper strength. / QC 20100823
12

Micromechanical Numeric Investigation of Fiber Bonds in 3D Network Structures.

AZİZOĞLU, YAĞIZ January 2014 (has links)
In manufacturing of paper and paperboard, optimized fiber usage has crucial importance for process efficiency and profitability. Dry strength of paper is one of the important quality criteria, which can be improved by adding dry strength additive that affect fiber to fiber bonding. This study is using the micromechanical simulations which assist interpretation of the experimental results concerning the effect of strength additives. A finite element model for 3D dry fiber network was constructed to study the effect of bond strength, bond area and the number of bonds numerically on the strength of paper products. In the network, fibers’ geometrical properties such as wall thickness, diameter, length and curl were assigned according to fiber characterization of the pulp and SEM analyses of dry paper cross-section. The numerical network was created by depositing the fibers onto a flat surface which should mimic the handsheet-making procedure. In the FE model, each fiber was represented with a number of quadratic Timoshenko beam elements where fiber to fiber bonds were modelled by beam-to-beam contact. The contact model is represented by cohesive zone model, which needs bond strength and bond stiffness in normal and shear directions. To get a reasonable estimate of the bond stiffness, a detailed finite element model of a fiber bond was used. Additionally, the effect of different fiber and bond geometries on bond stiffness were examined by this model since the previous work [13] indicated that the bond stiffness can have a considerable effect on dry strength of paper. The network simulation results show that the effect of the strength additive comes through improving the bond strength primarily. Furthermore, with the considered sheet structure, both the fiber bond compliance and the number of bonds affect the stiffness of paper. Finally, the results of the analyses indicated that the AFM measurements of the fiber adhesion could not be used directly to relate the corresponding changes in the bond strength. The fiber bond simulation concluded that fiber wall thickness has the most significant effect on the fiber bond compliance. It was also affected by micro-fibril orientation angle, bond orientation and the degree of pressing.
13

Strength Properties of Paper produced from Softwood Kraft Pulp : Pulp Mixture, Reinforcement and Sheet Stratification

Karlsson, Hanna January 2010 (has links)
For paper producers, an understanding of the development of strength properties in the paper is of uttermost importance. Strong papers are important operators both in the traditional paper industry as well as in new fields of application, such as fibre-based packaging, furniture and light-weight building material. In the work reported in this thesis, three approaches to increasing paper strength were addressed: mixing different pulps, multilayering and reinforcement with man-made fibres. In specific: The effects of mixing Swedish softwood kraft pulp with southern pine or with abaca (Musa Textilis) were investigated. Handsheets of a softwood kraft pulp with the addition of abaca fibres were made in a conventional sheet former. It was seen that the addition of abaca fibres increased the tearing resistance, fracture toughness, folding endurance and air permeance. Tensile strength, tensile stiffness and tensile energy absorption, however, decreased somewhat. Still it was possible to add up to about 60% abaca without any great loss in tensile strength. As an example, with the addition of 30% abaca, the tear index was increased by 36%, while the tensile index was decreased by 8%. To study the effect of stratification, a handsheet former for the production of stratified sheets, the LB Multilayer Handsheet Former was evaluated. The advantage of this sheet former is that it forms a stratified sheet at low consistency giving a good ply bond. It was shown to produce sheets with good formation and the uniformity, evaluated as the variation of paper properties, is retained at a fairly constant level when the number of layers in the stratified sheets is increased. The uniformity of the sheets produced in the LB Multilayer Handsheet Former is generally at the same level as of those produced in conventional sheet formers. The effects of placing southern pine and abaca in separate layers, rather than mixing them homogeneously with softwood pulp were studied. Homogeneous and stratified sheets composed of softwood and southern pine or softwood and abaca were produced in the LB Multilayer Handsheet Former. It was found that by stratifying a sheet, so that a pulp with a high tear index and a pulp with a high tensile index are placed in separate layers, it was possible to increase the tear index by approximately 25%, while the tensile index was decreased by 10-20%. Further, by mixing a pulp with less conformable fibres and no fines with a pulp with more flexible fibres and fines, a synergy in tensile strength (greater strength than that predicted by linear mass fraction additivity) was obtained. The effects of stratifying sheets composed of softwood and abaca were compared to the effects of refining the softwood pulp. Homogeneous and stratified sheets composed of softwood with three different dewatering resistances and abaca were also produced in the LB Multilayer Handsheet Former. It was found that by stratifying the sheets the tear index was retained while the tensile index was increased by the refining. The effects of reinforcing softwood pulp of different dewatering resistances with man-made fibres with low bonding ability were also investigated. Man-made fibres (i.e. regenerated cellulose, polyester and glass fibres) were added in the amounts 1, 3, or 5 wt% to softwood pulp of three different dewatering resistances. It was found that with refining of a softwood pulp and subsequent addition of long fibres with low bonding ability the tensile-tear relationship can be shifted towards higher strength values. The bonding ability of the man-made fibres was evaluated by pull-out tests and the results indicated that, in relation to the fibre strength, regenerated cellulose (lyocell) was most firmly attached to the softwood network while the glass fibres were most loosely attached.

Page generated in 0.07 seconds