• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genes to remember : imaging genetics of hippocampus-based memory functions

Kauppi, Karolina January 2013 (has links)
In the field of imaging genetics, brain function and structure are used as intermediate phenotypes between genes and cognition/diseases to validate and extend findings from behavioral genetics. In this thesis, three of the strongest candidate genes for episodic memory, KIBRA, BDNF, and APOE, were examined in relation to memory performance and hippocampal/parahippocampal fMRI blood-oxygen level-dependent (BOLD) signal. A common T allele in the KIBRA gene was previously associated with superior memory, and increased hippocampal activation was observed in noncarriers of the T allele which was interpreted as reflecting compensatory recruitment. The results from the first study revealed that both memory performance and hippocampal activation at retrieval was higher in T allele carriers (study I). The BDNF 66Met and APOE ε4 alleles have previously been associated with poorer memory performance, but their relation to brain activation has been inconsistent with reports of both increased and decreased regional brain activation relative to noncarriers. Here, decreased hippocampal/parahippocampal activation was observed in carriers of BDNF 66Met (study II) as well as APOE ε4 (study III) during memory encoding. In addition, there was an additive gene-gene effect of APOE and BDNF on hippocampal and parahippocampal activation (study III). Collectively, the results from these studies on KIBRA, BDNF, and APOE converge on higher medial temporal lobe activation for carriers of a high-memory associated allele, relative to carriers of a low-memory associated allele. In addition, the observed additive effect of APOE and BDNF demonstrate that a larger amount of variance in BOLD signal change can be explained by considering the combined effect of more than one genetic polymorphism. These imaging genetics findings support and extend previous knowledge from behavioral genetics on the role of these memory-related genes.
2

Emotional processing of natural visual images in brief exposures and compound stimuli : fMRI and behavioural studies

Shaw, Lynda Joan January 2009 (has links)
Can the brain register the emotional valence of brief exposures of complex natural stimuli under conditions of forward and backward masking, and under conditions of attentional competition between foveal and peripheral stimuli? To address this question, three experiments were conducted. The first, a behavioural experiment, measured subjective valence of response (pleasant vs unpleasant) to test the perception of the valence of natural images in brief, masked exposures in a forward and backward masking paradigm. Images were chosen from the International Affective Picture System (IAPS) series. After correction for response bias, responses to the majority of target stimuli were concordant with the IAPS ratings at better than chance, even when the presence of the target was undetected. Using functional magnetic resonance imaging (fMRI), the effects of IAPS valence and stimulus category were objectively measured on nine regions of interest (ROIs) using the same strict temporal restrictions in a similar masking design. Evidence of affective processing close to or below conscious threshold was apparent in some of the ROIs. To further this line of enquiry, a second fMRI experiment mapping the same ROIs and using the same stimuli were presented in a foveal (‘attended’) peripheral (‘to-be-ignored’) paradigm (small image superimposed in the centre of a large image of the same category, but opposite valence) to investigate spatial parameters and limitations of attention. Results are interpreted as showing both valence and category specific effects of ‘to-be-ignored’ images in the periphery. These results are discussed in light of theories of the limitations of attentional capacity and the speed in which we process natural images, providing new evidence of the breadth of variety in the types of affective visual stimuli we are able to process close to the threshold of conscious perception.
3

Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-né

Chebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear. We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an iii atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.
4

Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-né

Chebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear. We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an iii atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.

Page generated in 0.0305 seconds