Spelling suggestions: "subject:"elasticité intermodal"" "subject:"elasticité intermodality""
1 |
Plasticité des aires visuelles chez le sujet sain et chez l'implanté cochléaireDoucet, Marie-Ève January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Les habiletés olfactives des aveugles de naissance : organisation anatomo-fonctionnelle et aspects comportementauxBeaulieu Lefebvre, Mathilde 08 1900 (has links)
La littérature décrit certains phénomènes de réorganisation physiologique et fonctionnelle dans le cerveau des aveugles de naissance, notamment en ce qui a trait au traitement de l’information tactile et auditive. Cependant, le système olfactif des aveugles n’a reçu que très peu d’attention de la part des chercheurs. Le but de cette étude est donc de comprendre comment les aveugles traitent l’information olfactive au niveau comportemental et d’investiguer les substrats neuronaux impliqués dans ce processus. Puisque, en règle générale, les aveugles utilisent leurs sens résiduels de façon compensatoire et que le système olfactif est extrêmement plastique, des changements au niveau de l’organisation anatomo-fonctionnelle pourraient en résulter. Par le biais de méthodes psychophysiques et d’imagerie cérébrale (Imagerie par Résonance Magnétique fonctionnelle-IRMf), nous avons investigué les substrats anatomo-fonctionnels sollicités par des stimuli olfactifs. Nous avons trouvé que les aveugles ont un seuil de détection plus bas que les voyants, mais que leur capacité à discriminer et identifier des odeurs est similaire au groupe contrôle. Ils ont aussi plus conscience de l’environnement olfactif. Les résultats d’imagerie révèlent un signal BOLD plus intense dans le cortex orbitofrontal droit, le thalamus, l’hippocampe droit et le cortex occipital lors de l’exécution d’une tâche de détection d’odeur. Nous concluons que les individus aveugles se fient d’avantage à leur sens de l’odorat que les voyants afin d’évoluer dans leur environnement physique et social. Cette étude démontre pour la première fois que le cortex visuel des aveugles peut être recruté par des stimuli olfactifs, ce qui prouve que cette région assume des fonctions multimodales. / It is generally acknowledged that people blind from birth develop supra-normal sensory abilities in order to compensate for their visual deficit. While extensive research has been done on the somatosensory and auditory modalities of the blind, information about their sense of smell remains scant. The goal of this study was therefore to understand olfactory processing in the blind at the behavioral and the neuroanatomical levels. Since blind individuals use their remaining senses in a compensatory way to assess their environment and since the olfactory system is highly plastic, it is likely to be susceptible to changes similar to those observed for tactile and auditory modalities. We used psychophysical testing and functional magnetic resonance imaging (fMRI) to investigate the neuronal substrates responsible for odor processing. Our data showed that blind subjects had a lower odor detection threshold compared to the sighted. However, no group differences were found for odor discrimination and odor identification. Interestingly, the OAS revealed that blind participants scored higher for odor awareness. Our fMRI data revealed stronger BOLD responses in the right lateral orbitofrontal cortex, bilateral medio-dorsal thalamus, right hippocampus and left occipital cortex in the blind participants during an odor detection task. We conclude that blind subjects rely more on their sense of smell than the sighted in order to assess their environment and to recognize places and people. This is the first demonstration that the visual cortex of the blind can also be recruited by odorants, thus adding new evidence to its multimodal function.
|
3 |
Le sens du goût chez l'aveugle congénitalGagnon, Léa 12 1900 (has links)
Thèse réalisée en collaboration avec le Département de neurosciences et pharmacologie de l'Université de Copenhague, Danemark. / La vision est cruciale dans la recherche et l’identification de nourriture. Non seulement elle déclenche le réflexe céphalique de la digestion mais, combinée à l’expérience alimentaire, elle aide à raffiner nos prévisions par rapport aux aliments. En un simple clin d’œil, la vue renseigne sur la disponibilité, l’identité, la comestibilité, les saveurs, les textures et les contenus nutritionnel, calorique et toxique des aliments qui nous entourent. Étant donnée l’importance de la vue dans l’expérience gustative, il est judicieux de se poser la question suivante : Qu’arrive-t-il au goût en absence de vision? Cette thèse répond à cette question par l’étude de cette modalité chez l’aveugle de naissance grâce aux techniques de psychophysique et d’imagerie cérébrale. De plus, les conséquences gustatives de la cécité sont comparées à celles suivant la perte d’un autre sens important dans l’appréciation des aliments, soit l’odorat (anosmie). Les résultats comportementaux démontrent premièrement que l’absence de vision depuis la naissance abaisse la sensibilité gustative, reflétée par des seuils élevés de détection et d’identification des cinq goûts de base (sucré, salé, acide, amer, umami). Deuxièmement, bien que les aveugles congénitaux aient plus de facilité à identifier les odeurs comestibles par leurs narines (voie olfactive orthonasale), ceux-ci perdent leur avantage par rapport aux voyants quand ils doivent identifier ces stimuli placés sur la langue (voie olfactive rétronasale). Les résultats d’imagerie indiquent en outre que les aveugles congénitaux activent moins leur cortex gustatif primaire (insula/opercule) et leur hypothalamus par rapport aux voyants durant une tâche gustative. De plus, l’absence d’activation dans le cortex (« visuel ») occipital chez l’aveugle pointe vers le manque de plasticité intermodale en gustation. Chez les anosmiques congénitaux d’autre part, non seulement l’absence d’odorat diminue l’habileté à reconnaître les goûts mais elle abaisse également la force du signal dans les aires olfactives (ex : cortex orbitofrontal médial) durant une tâche gustative. Les résultats chez l’aveugle contrastent grandement avec les études antérieures soulignant l’amélioration de leurs sens extéroceptifs tels que l’audition, l’olfaction (orthonasale) et le toucher qui font tous intervenir la plasticité intermodale. Par ailleurs, les données chez l’anosmique concordent avec ceux de la littérature indiquant une diminution similaire de la chémosensation trigéminale, laquelle est également associée à un affaiblissement du circuit neural des saveurs. Ceci suggère que le sens du goût ne soit pas utile aux handicapés visuels pour percevoir l’environnement extérieur et ainsi compenser leur perte de vision. De plus, bien que l’odorat participe à l’appréciation de la nourriture en bouche, sa perte n’entraîne pas de compensation sensorielle chez l’anosmique. Prises ensemble, ces données indiquent différents mécanismes d’adaptation suivant la cécité et l’anosmie. Elles soutiennent également le point de vue selon lequel la perception unifiée de goûts et de saveurs inclut non seulement les sens chimiques et le toucher mais également la vision. Considérant l’importance du goût et de l’alimentation dans la qualité de vie, ces résultats encouragent la société tout comme les professionnels de la réadaptation à faciliter l’accès à la nourriture ainsi qu’à l’enseignement culinaire chez les handicapés sensoriels. / Vision is crucial for seeking and identifying food. Not only does it trigger the cephalic digestion reflex but, when combined with the experience of eating, it helps to refine expectations about foods. In a single eye blink, sight informs us about the availability, identity, palatability, flavours, textures as well as nutritional, caloric and toxic contents of foods surrounding us. Given the importance of sight in the gustatory experience, one may therefore ask the following question: What happens to gustation without vision? This thesis answers this question by studying this modality in congenitally blind subjects using psychophysical and brain imaging techniques. Additionally, the gustatory consequences of blindness are compared to those following the loss of another important modality involved in the appreciation of food, i.e. the sense of smell (anosmia). Behavioural results first show that the absence of vision from birth reduces the gustatory sensitivity, as reflected by higher detection and identification thresholds of the five basic tastes (sweet, salty, acid, bitter, umami). Second, although congenitally blind subjects are better at identifying palatable odorant stimuli through their nostrils (orthonasal olfactory route), they lose this advantage over sighted people when identifying these stimuli placed on their tongue (retronasal olfactory route). Neuroimaging results also reveal that congenitally blind subjects activate the primary gustatory cortex (insula/operculum) and the hypothalamus less compared to blindfolded sighted participants. Moreover, the absence of occipital (“visual”) cortex activity in the blind points towards the lack of crossmodal plasticity in gustation. In congenitally anosmics, on the other hand, not only does the absence of smell lower the ability to recognize tastes but it also lowers the strength of the signal in olfactory areas (e.g. medial orbitofrontal cortex) during a gustatory task. The results in the blind greatly contrast with previous studies highlighting the enhancement of their exteroceptive senses such as audition, (orthonasal) olfaction and touch, all of which involve crossmodal plasticity. Moreover, data in the anosmic group are consistent with previous literature describing similar decrease of trigeminal chemosensation that is also associated with a weakening of the flavour neural network. This suggests that the sense of taste is not useful to the visually impaired to perceive their exterior environment and compensate for their lack of vision. Furthermore, although olfaction contributes to the appreciation of foods in the mouth, the lack of this modality does not drive sensory compensation in anosmic subjects. Taken together, these data indicate different adaptation mechanisms following blindness and anosmia. They also support the view according to which the unified perception of tastes and flavours includes not only the chemical senses (taste, smell and trigeminal chemosensation) and touch but also vision. Given the importance of taste and eating experience in quality of life, these results encourage society as well as rehabilitation professionals to facilitate access to foods and culinary lessons in sensory deprived subjects.
|
4 |
Les habiletés olfactives des aveugles de naissance : organisation anatomo-fonctionnelle et aspects comportementauxBeaulieu Lefebvre, Mathilde 08 1900 (has links)
La littérature décrit certains phénomènes de réorganisation physiologique et fonctionnelle dans le cerveau des aveugles de naissance, notamment en ce qui a trait au traitement de l’information tactile et auditive. Cependant, le système olfactif des aveugles n’a reçu que très peu d’attention de la part des chercheurs. Le but de cette étude est donc de comprendre comment les aveugles traitent l’information olfactive au niveau comportemental et d’investiguer les substrats neuronaux impliqués dans ce processus. Puisque, en règle générale, les aveugles utilisent leurs sens résiduels de façon compensatoire et que le système olfactif est extrêmement plastique, des changements au niveau de l’organisation anatomo-fonctionnelle pourraient en résulter. Par le biais de méthodes psychophysiques et d’imagerie cérébrale (Imagerie par Résonance Magnétique fonctionnelle-IRMf), nous avons investigué les substrats anatomo-fonctionnels sollicités par des stimuli olfactifs. Nous avons trouvé que les aveugles ont un seuil de détection plus bas que les voyants, mais que leur capacité à discriminer et identifier des odeurs est similaire au groupe contrôle. Ils ont aussi plus conscience de l’environnement olfactif. Les résultats d’imagerie révèlent un signal BOLD plus intense dans le cortex orbitofrontal droit, le thalamus, l’hippocampe droit et le cortex occipital lors de l’exécution d’une tâche de détection d’odeur. Nous concluons que les individus aveugles se fient d’avantage à leur sens de l’odorat que les voyants afin d’évoluer dans leur environnement physique et social. Cette étude démontre pour la première fois que le cortex visuel des aveugles peut être recruté par des stimuli olfactifs, ce qui prouve que cette région assume des fonctions multimodales. / It is generally acknowledged that people blind from birth develop supra-normal sensory abilities in order to compensate for their visual deficit. While extensive research has been done on the somatosensory and auditory modalities of the blind, information about their sense of smell remains scant. The goal of this study was therefore to understand olfactory processing in the blind at the behavioral and the neuroanatomical levels. Since blind individuals use their remaining senses in a compensatory way to assess their environment and since the olfactory system is highly plastic, it is likely to be susceptible to changes similar to those observed for tactile and auditory modalities. We used psychophysical testing and functional magnetic resonance imaging (fMRI) to investigate the neuronal substrates responsible for odor processing. Our data showed that blind subjects had a lower odor detection threshold compared to the sighted. However, no group differences were found for odor discrimination and odor identification. Interestingly, the OAS revealed that blind participants scored higher for odor awareness. Our fMRI data revealed stronger BOLD responses in the right lateral orbitofrontal cortex, bilateral medio-dorsal thalamus, right hippocampus and left occipital cortex in the blind participants during an odor detection task. We conclude that blind subjects rely more on their sense of smell than the sighted in order to assess their environment and to recognize places and people. This is the first demonstration that the visual cortex of the blind can also be recruited by odorants, thus adding new evidence to its multimodal function.
|
5 |
L'utilisation des sons spatialisés horizontalement en tant qu'aide à la navigation chez des aveugles précoces et tardifsParé, Samuel 08 1900 (has links)
La vision est le sens privilégié pour intéragir avec notre environnement. C’est pourquoi le système visuel prend plus d’un tiers du cortex cérébral. Lorsqu’un individu perd sa vision, ce système est dépourvu de sa source première de stimuli. Il subit donc une réorganisation neuronale massive et devient un espace intermodal. Pour ce faire, il recrute des afférences des autres modalités afin que celles-ci prennent en charge les fonctions qui sont normalement soutenues par la vision. Ce phénomène, appelé plasticité cérébrale, est stimulé par la durée de la cécité et par l’entraînement des sens fonctionnels. Ceci fait en sorte que les aveugles développent des supra-capacités dans les modalités fonctionnelles. La substitution sensorielle est un principe qui exploite ce phénomène. Celle-ci permet de substituer un sens déficient par un autre sens. Pour ce faire, des appareils de substitution sensorielle sont développés pour acheminer des informations visuelles via le toucher ou l’audition. Bien que le but de ces appareils est d’offrir une vision fonctionnelle aux aveugles, la problématique principale demeure l’indépendance de navigation des aveugles. Cependant, ces appareils sont très peu appréciés par les aveugles parce qu’ils sont inaccessibles et qu’ils fournissent un signal complexe qui demande un entraînement intense et une charge cognitive trop élevée.
Dans ce projet, nous avons évalué le potentiel d’un nouvel appareil de substitution sensorielle qui fournit des informations strictement pertinentes à la navigation spatiale sous la forme de sons spatialisés horizontalement. Pour ce faire, des participants aveugles précoces, aveugles tardifs et des voyants aux yeux bandés ont été testé pour leurs habiletés à détecter et éviter des obstacles à l’aide de l’appareil dans des conditions expérimentales de détection et d’évitement d’obstacles. L’étude a démontré qu’il est possible d’utiliser cet appareil en tant qu’aide à la navigation et que ce système est utilisé plus efficacement par les groupes d’aveugles. / Vision is the preferred sense for interacting with our environment. This is why the visual system takes up more than a third of the cerebral cortex. When an individual loses his vision, this system misses its primary source of stimuli. It therefore undergoes a massive neuronal reorganization and becomes an intermodal space. To do so, it recruits afferents from other modalities so that they take over the functions that are normally mediated by vision. This phenomenon, known as cerebral plasticity, is stimulated by the experience of blindness as well as by the training of the functional senses. This causes the blind to develop supra-abilities in their functional modalities. Sensory substitution is a principle that exploits this phenomenon. It makes it possible to substitute a deficient modality with another modality. To help the blind, sensory substitution devices are being developed to convey visual information via touch or hearing. Although these devices attempt to provide functional vision for the blind, the main issue they try to address is the improvement of the navigational independency of the blind. However, these devices are very little appreciated by the blind since they are inaccessible and provide a complex signal that requires intense training and too high of a cognitive load.
Therefore, in this project, we evaluated the potential of a new sensory substitution device that provides information strictly relevant to spatial navigation in the form of horizontally spatialized sounds. To do so, early blind , late blind and sighted blindfolded individuals were tested for their ability to detect and avoid obstacles using the device under experimental conditions. The study showed that it is possible to use this device as a navigation aid and that this system is used more effectively by the blind.
|
6 |
Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-néChebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris.
Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles
i
(article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear.
We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an
iii
atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.
|
7 |
Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-néChebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris.
Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles
i
(article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear.
We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an
iii
atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.
|
8 |
Plasticité intermodale chez le hamster énucléé à la naissance : Études de la distribution des interneurones CaBPir dans les cortex visuel et auditif primaires.Desgent, Sébastien 01 1900 (has links)
La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales.
La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires.
Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie.
Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif.
Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale. / The postnatal period and sensory experience are critical for the development of the visual system. The inhibitory interneurons expressing the γ-aminobutyric acid (GABA) play an important role in the control of neural activity, refinement and treatment of sensory information which reaches the cerebral cortex. During development, when the cerebral cortex is very likely to be influenced by extrinsic factors, GABA acts in the formation of critical period of receptivity as well as in experience dependent plasticity. Thus, this inhibitory system adjusts the functioning of the primary sensory areas according to the specific conditions of activity from the environment, cortical afferents (e.g. of thalamic origin), and sensory experience. Several studies show that differences in the distribution and density of these inhibitory interneurons tend to reflect functional discrepancies between the different neocortical areas.
Parvalbumin (PV), Calretinin (CR) and Calbindin (CB) are calcium-binding proteins (CaBPs) found in different sub-populations of GABAergic cortical interneurons. These proteins buffer intracellular calcium levels, which can in turn modulate several neural functions, notably the temporal aspect of action potentials, synaptic transmission and long-term potentiation. Several recent studies are showing that CaBPs immunoreactive (ir) interneurons are also very sensitive to experience and sensory activity during development and adulthood. Therefore, these neurons may have a critical role in intermodal plasticity or compensatory processes between primary sensory cortices.
In the hamster (Mesocricetus auratus), after enucleation at birth, the primary visual cortex can be recruited by other sensory modalities such as touch and audition. After this type of visual deprivation, there is establishment of permanent ectopic projections between the inferior colliculus (IC) and the lateral geniculate nucleus (LGN). This phenomenon leads to the rerouting of auditory information to the primary visual cortex (V1) during postnatal development. By using this animal model, the general objective of this thesis is to study the influence and the role of sensory activity on the distribution and organization of cortical interneurons that display immunoreactivity for CaBPs in the primary visual and auditory sensory areas in adult hamsters. Changes in the expression of CaBPs were quantitatively determined by assessing the laminar distribution profiles of cell bodies revealed by immunohistochemistry.
In the first experiment, we studied laminar distribution of CaBPs in the primary visual (V1) and auditory (A1) cortices of normal hamsters. PVir and CBir, but not CRir neurons, are distributed in a dissimilar fashion between the two primary cortices devoted to each sensory modality. In the second study, a comparison was performed between control animals and hamsters which were enucleated at birth. The results of this study show that the primary visual cortex of these animals adopts a PVir chemoarchitecture similar to that of the auditory cortex.
Our research shows that the abolition of visual activity at birth can influence the expression of CaBPs in V1 of the adult hamster. The present results also suggest that the type of activity in afferents from other sensory modalities can at least in part modulate the cortical circuitry of CaBPs in the host or recruited cortex. Thus, our work supports the hypothesis that sub-populations of GABAergic interneurons may play a critical role in the intermodal cortical plasticity.
|
9 |
Plasticité intermodale chez le hamster énucléé à la naissance : Études de la distribution des interneurones CaBPir dans les cortex visuel et auditif primairesDesgent, Sébastien 01 1900 (has links)
No description available.
|
Page generated in 0.1036 seconds