• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the effects of visual deprivation on subcortical and cortical structures using functional MRI and MR spectroscopy

Coullon, Gaelle Simone Louise January 2015 (has links)
Visual deprivation in early life causes widespread changes to the visual pathway. Structures normally dedicated to vision can be recruited for processing of the remaining senses (i.e. audition). This thesis used magnetic resonance imaging to explore how the 'visual' pathway reorganises in congenital bilateral anophthalmia, a condition where individuals are born without eyes. Anophthalmia provides a unique model of complete deprivation, since the ‘visual’ pathway has not experienced pre- or post-natal visual input. Firstly, this thesis explored reorganisation of the anophthalmic 'visual' pathway for auditory processing, from subcortical structures responding to basic sounds (Chapters 3 and 4), to higher-order occipital areas extracting meaning from speech sounds (Chapter 7). Secondly, this thesis looked to better understand the neurochemical, neuroanatomical and behavioural changes that accompany reorganisation in anophthalmia (Chapters 5 and 6). Finally, this thesis investigated whether similar changes can take place in the sighted brain after a short period of visual deprivation (Chapter 8). The experiments in this thesis provide some evidence that the lack of pre-natal visual experiences affects cross-modal reorganisation. Chapter 4 describes a unique subcortico-cortical route for auditory input in anophthalmia. Furthermore, Chapter 7 suggests that hierarchical processing of sensory information in the occipital cortex is maintained in anophthalmia, which may not be the case in congenital or early-onset blindness. However, this thesis also suggests that some reorganisation thought to be limited to anophthalmia can be found in early-onset blindness, for example with the subcortical functional changes described in Chapter 3. In addition, neurochemical, neuroanatomical and behavioural changes described in Chapters 5 and 6 are comparable to those reported in early-onset blindness, therefore demonstrating important similarities between these populations. Finally, this thesis describes how some of these functional and behavioural changes can also take place in sighted subjects after a short period of blindfolding, although this effect is extremely variable across subjects (Chapter 8). The thesis concludes by highlighting the considerable contribution of individual differences in studies of cross-modal reorganisation, and emphasises the need for larger more homogenous groups when investigating subcortical and cortical plasticity in the absence of visual input.
2

The Reorganization of Primary Auditory Cortex by Invasion of Ectopic Visual Inputs

Mao, Yuting 06 May 2012 (has links)
Brain injury is a serious clinical problem. The success of recovery from brain injury involves functional compensation in the affected brain area. We are interested in general mechanisms that underlie compensatory plasticity after brain damage, particularly when multiple brain areas or multiple modalities are included. In this thesis, I studied the function of auditory cortex after recovery from neonatal midbrain damage as a model system that resembles patients with brain damage or sensory dysfunction. I addressed maladaptive changes of auditory cortex after invasion by ectopic visual inputs. I found that auditory cortex contained auditory, visual, and multisensory neurons after it recovered from neonatal midbrain damage (Mao et al. 2011). The distribution of these different neuronal responses did not show any clustering or segregation. As might be predicted from the fact that auditory neurons and visual neurons were intermingled throughout the entire auditory cortex, I found that residual auditory tuning and tonotopy in the rewired auditory cortex were compromised. Auditory tuning curves were broader and tonotopic maps were disrupted in the experimental animals. Because lateral inhibition is proposed to contribute to refinement of sensory maps and tuning of receptive fields, I tested whether loss of inhibition is responsible for the compromised auditory function in my experimental animals. I found an increase rather than a decrease of inhibition in the rewired auditory cortex, suggesting that broader tuning curves in the experimental animals are not caused by loss of lateral inhibition. These results suggest that compensatory plasticity can be maladaptive and thus impair the recovery of the original sensory cortical function. The reorganization of brain areas after recovery from brain damage may require stronger inhibition in order to process multiple sensory modalities simultaneously. These findings provide insight into compensatory plasticity after sensory dysfunction and brain damage and new information about the role of inhibition in cross-modal plasticity. This study can guide further research on design of therapeutic strategies to encourage adaptive changes and discourage maladaptive changes after brain damage, sensory/motor dysfunction, and deafferentation.
3

Les habiletés olfactives des aveugles de naissance : organisation anatomo-fonctionnelle et aspects comportementaux

Beaulieu Lefebvre, Mathilde 08 1900 (has links)
La littérature décrit certains phénomènes de réorganisation physiologique et fonctionnelle dans le cerveau des aveugles de naissance, notamment en ce qui a trait au traitement de l’information tactile et auditive. Cependant, le système olfactif des aveugles n’a reçu que très peu d’attention de la part des chercheurs. Le but de cette étude est donc de comprendre comment les aveugles traitent l’information olfactive au niveau comportemental et d’investiguer les substrats neuronaux impliqués dans ce processus. Puisque, en règle générale, les aveugles utilisent leurs sens résiduels de façon compensatoire et que le système olfactif est extrêmement plastique, des changements au niveau de l’organisation anatomo-fonctionnelle pourraient en résulter. Par le biais de méthodes psychophysiques et d’imagerie cérébrale (Imagerie par Résonance Magnétique fonctionnelle-IRMf), nous avons investigué les substrats anatomo-fonctionnels sollicités par des stimuli olfactifs. Nous avons trouvé que les aveugles ont un seuil de détection plus bas que les voyants, mais que leur capacité à discriminer et identifier des odeurs est similaire au groupe contrôle. Ils ont aussi plus conscience de l’environnement olfactif. Les résultats d’imagerie révèlent un signal BOLD plus intense dans le cortex orbitofrontal droit, le thalamus, l’hippocampe droit et le cortex occipital lors de l’exécution d’une tâche de détection d’odeur. Nous concluons que les individus aveugles se fient d’avantage à leur sens de l’odorat que les voyants afin d’évoluer dans leur environnement physique et social. Cette étude démontre pour la première fois que le cortex visuel des aveugles peut être recruté par des stimuli olfactifs, ce qui prouve que cette région assume des fonctions multimodales. / It is generally acknowledged that people blind from birth develop supra-normal sensory abilities in order to compensate for their visual deficit. While extensive research has been done on the somatosensory and auditory modalities of the blind, information about their sense of smell remains scant. The goal of this study was therefore to understand olfactory processing in the blind at the behavioral and the neuroanatomical levels. Since blind individuals use their remaining senses in a compensatory way to assess their environment and since the olfactory system is highly plastic, it is likely to be susceptible to changes similar to those observed for tactile and auditory modalities. We used psychophysical testing and functional magnetic resonance imaging (fMRI) to investigate the neuronal substrates responsible for odor processing. Our data showed that blind subjects had a lower odor detection threshold compared to the sighted. However, no group differences were found for odor discrimination and odor identification. Interestingly, the OAS revealed that blind participants scored higher for odor awareness. Our fMRI data revealed stronger BOLD responses in the right lateral orbitofrontal cortex, bilateral medio-dorsal thalamus, right hippocampus and left occipital cortex in the blind participants during an odor detection task. We conclude that blind subjects rely more on their sense of smell than the sighted in order to assess their environment and to recognize places and people. This is the first demonstration that the visual cortex of the blind can also be recruited by odorants, thus adding new evidence to its multimodal function.
4

Les habiletés olfactives des aveugles de naissance : organisation anatomo-fonctionnelle et aspects comportementaux

Beaulieu Lefebvre, Mathilde 08 1900 (has links)
La littérature décrit certains phénomènes de réorganisation physiologique et fonctionnelle dans le cerveau des aveugles de naissance, notamment en ce qui a trait au traitement de l’information tactile et auditive. Cependant, le système olfactif des aveugles n’a reçu que très peu d’attention de la part des chercheurs. Le but de cette étude est donc de comprendre comment les aveugles traitent l’information olfactive au niveau comportemental et d’investiguer les substrats neuronaux impliqués dans ce processus. Puisque, en règle générale, les aveugles utilisent leurs sens résiduels de façon compensatoire et que le système olfactif est extrêmement plastique, des changements au niveau de l’organisation anatomo-fonctionnelle pourraient en résulter. Par le biais de méthodes psychophysiques et d’imagerie cérébrale (Imagerie par Résonance Magnétique fonctionnelle-IRMf), nous avons investigué les substrats anatomo-fonctionnels sollicités par des stimuli olfactifs. Nous avons trouvé que les aveugles ont un seuil de détection plus bas que les voyants, mais que leur capacité à discriminer et identifier des odeurs est similaire au groupe contrôle. Ils ont aussi plus conscience de l’environnement olfactif. Les résultats d’imagerie révèlent un signal BOLD plus intense dans le cortex orbitofrontal droit, le thalamus, l’hippocampe droit et le cortex occipital lors de l’exécution d’une tâche de détection d’odeur. Nous concluons que les individus aveugles se fient d’avantage à leur sens de l’odorat que les voyants afin d’évoluer dans leur environnement physique et social. Cette étude démontre pour la première fois que le cortex visuel des aveugles peut être recruté par des stimuli olfactifs, ce qui prouve que cette région assume des fonctions multimodales. / It is generally acknowledged that people blind from birth develop supra-normal sensory abilities in order to compensate for their visual deficit. While extensive research has been done on the somatosensory and auditory modalities of the blind, information about their sense of smell remains scant. The goal of this study was therefore to understand olfactory processing in the blind at the behavioral and the neuroanatomical levels. Since blind individuals use their remaining senses in a compensatory way to assess their environment and since the olfactory system is highly plastic, it is likely to be susceptible to changes similar to those observed for tactile and auditory modalities. We used psychophysical testing and functional magnetic resonance imaging (fMRI) to investigate the neuronal substrates responsible for odor processing. Our data showed that blind subjects had a lower odor detection threshold compared to the sighted. However, no group differences were found for odor discrimination and odor identification. Interestingly, the OAS revealed that blind participants scored higher for odor awareness. Our fMRI data revealed stronger BOLD responses in the right lateral orbitofrontal cortex, bilateral medio-dorsal thalamus, right hippocampus and left occipital cortex in the blind participants during an odor detection task. We conclude that blind subjects rely more on their sense of smell than the sighted in order to assess their environment and to recognize places and people. This is the first demonstration that the visual cortex of the blind can also be recruited by odorants, thus adding new evidence to its multimodal function.
5

Role hmatových vousů v kompenzaci zrakového deficitu a vliv neurodegenerativního postižení na krosmodální plasticitu u myšího modelu retinální a olivocerebelární degenerace / The role of whiskers in compensation of visual deficit and the influence of a neurodegenerative disorder on cross-modal compensation in a mousse model of retinal and olivocerebellar degeneration

Voller, Jaroslav January 2015 (has links)
Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of C3H strain suffers from RD1 retinal degeneration that leads to visual impairment at weaning age. Independently on the retinal degeneration there is also present olivocerebellar degeneration caused by Lurcher mutation. This neurodegenerative disorder causes motor deficits, increased CNS excitability as well as changes in synaptic plasticity. The aim of this study was to evaluate a role of whiskers in compensation of the visual deficit and to assess the influence of the olivocerebellar degeneration on this process. To differentiate contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. We focused on motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and the CNS excitability (audiogenic epilepsy). In the seeing mice without olivocerebellar degeneration, the removal of the whiskers had no effect. In the blind animals without olivocerebellar degeneration, chronic tactile deprivation caused changes in gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the...
6

L'utilisation des sons spatialisés horizontalement en tant qu'aide à la navigation chez des aveugles précoces et tardifs

Paré, Samuel 08 1900 (has links)
La vision est le sens privilégié pour intéragir avec notre environnement. C’est pourquoi le système visuel prend plus d’un tiers du cortex cérébral. Lorsqu’un individu perd sa vision, ce système est dépourvu de sa source première de stimuli. Il subit donc une réorganisation neuronale massive et devient un espace intermodal. Pour ce faire, il recrute des afférences des autres modalités afin que celles-ci prennent en charge les fonctions qui sont normalement soutenues par la vision. Ce phénomène, appelé plasticité cérébrale, est stimulé par la durée de la cécité et par l’entraînement des sens fonctionnels. Ceci fait en sorte que les aveugles développent des supra-capacités dans les modalités fonctionnelles. La substitution sensorielle est un principe qui exploite ce phénomène. Celle-ci permet de substituer un sens déficient par un autre sens. Pour ce faire, des appareils de substitution sensorielle sont développés pour acheminer des informations visuelles via le toucher ou l’audition. Bien que le but de ces appareils est d’offrir une vision fonctionnelle aux aveugles, la problématique principale demeure l’indépendance de navigation des aveugles. Cependant, ces appareils sont très peu appréciés par les aveugles parce qu’ils sont inaccessibles et qu’ils fournissent un signal complexe qui demande un entraînement intense et une charge cognitive trop élevée. Dans ce projet, nous avons évalué le potentiel d’un nouvel appareil de substitution sensorielle qui fournit des informations strictement pertinentes à la navigation spatiale sous la forme de sons spatialisés horizontalement. Pour ce faire, des participants aveugles précoces, aveugles tardifs et des voyants aux yeux bandés ont été testé pour leurs habiletés à détecter et éviter des obstacles à l’aide de l’appareil dans des conditions expérimentales de détection et d’évitement d’obstacles. L’étude a démontré qu’il est possible d’utiliser cet appareil en tant qu’aide à la navigation et que ce système est utilisé plus efficacement par les groupes d’aveugles. / Vision is the preferred sense for interacting with our environment. This is why the visual system takes up more than a third of the cerebral cortex. When an individual loses his vision, this system misses its primary source of stimuli. It therefore undergoes a massive neuronal reorganization and becomes an intermodal space. To do so, it recruits afferents from other modalities so that they take over the functions that are normally mediated by vision. This phenomenon, known as cerebral plasticity, is stimulated by the experience of blindness as well as by the training of the functional senses. This causes the blind to develop supra-abilities in their functional modalities. Sensory substitution is a principle that exploits this phenomenon. It makes it possible to substitute a deficient modality with another modality. To help the blind, sensory substitution devices are being developed to convey visual information via touch or hearing. Although these devices attempt to provide functional vision for the blind, the main issue they try to address is the improvement of the navigational independency of the blind. However, these devices are very little appreciated by the blind since they are inaccessible and provide a complex signal that requires intense training and too high of a cognitive load. Therefore, in this project, we evaluated the potential of a new sensory substitution device that provides information strictly relevant to spatial navigation in the form of horizontally spatialized sounds. To do so, early blind , late blind and sighted blindfolded individuals were tested for their ability to detect and avoid obstacles using the device under experimental conditions. The study showed that it is possible to use this device as a navigation aid and that this system is used more effectively by the blind.
7

Role hmatových vousů v kompenzaci zrakového deficitu a vliv neurodegenerativního postižení na krosmodální plasticitu u myšího modelu retinální a olivocerebelární degenerace / The role of whiskers in compensation of visual deficit and the influence of a neurodegenerative disorder on cross-modal compensation in a mousse model of retinal and olivocerebellar degeneration

Voller, Jaroslav January 2015 (has links)
Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of C3H strain suffers from RD1 retinal degeneration that leads to visual impairment at weaning age. Independently on the retinal degeneration there is also present olivocerebellar degeneration caused by Lurcher mutation. This neurodegenerative disorder causes motor deficits, increased CNS excitability as well as changes in synaptic plasticity. The aim of this study was to evaluate a role of whiskers in compensation of the visual deficit and to assess the influence of the olivocerebellar degeneration on this process. To differentiate contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. We focused on motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and the CNS excitability (audiogenic epilepsy). In the seeing mice without olivocerebellar degeneration, the removal of the whiskers had no effect. In the blind animals without olivocerebellar degeneration, chronic tactile deprivation caused changes in gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the...
8

Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-né

Chebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear. We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an iii atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.
9

Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-né

Chebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear. We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an iii atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.

Page generated in 0.1028 seconds