• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Independent Operation of Parallel Three-phase Converters for Motor Drive Applications

Fingas, William Daniel 18 January 2010 (has links)
A motor drive consisting of two parallel voltage-sourced converters was developed and implemented. A parallel converter arrangement allows the system to be constructed in a modular fashion to gain economies of scale and redundancy. The converters are connected to common ac- and dc-buses without isolation and are controlled without inter-converter communication or a master/slave arrangement. The system was simulated and the results validated against an experimental setup. Both steady-state and dynamic load sharing were achieved through the use of drooped PI speed regulators. PI controllers were used to regulate the quadrature currents provided by each converter. Circulating 0-sequence current was regulated using P controllers. A linearized state-space model of the system was developed and an eigenvalue analysis was performed, showing system stability. Speed steps in simulation and in the laboratory demonstrated good response. The loss of one converter’s gating was emulated. The system continued to operate, showing an advantage of system redundancy.
2

Independent Operation of Parallel Three-phase Converters for Motor Drive Applications

Fingas, William Daniel 18 January 2010 (has links)
A motor drive consisting of two parallel voltage-sourced converters was developed and implemented. A parallel converter arrangement allows the system to be constructed in a modular fashion to gain economies of scale and redundancy. The converters are connected to common ac- and dc-buses without isolation and are controlled without inter-converter communication or a master/slave arrangement. The system was simulated and the results validated against an experimental setup. Both steady-state and dynamic load sharing were achieved through the use of drooped PI speed regulators. PI controllers were used to regulate the quadrature currents provided by each converter. Circulating 0-sequence current was regulated using P controllers. A linearized state-space model of the system was developed and an eigenvalue analysis was performed, showing system stability. Speed steps in simulation and in the laboratory demonstrated good response. The loss of one converter’s gating was emulated. The system continued to operate, showing an advantage of system redundancy.
3

On the use of fuzzy logic to control paralleled DC-DC converters

Tomescu, Bogdan 25 October 2001 (has links)
The objective of the thesis is to introduce a new fuzzy logic control application, develop the associated mathematical theory and prove the concept and its advantages through comparative simulation with existing, classical, methods. A stable fuzzy logic controller for the master-slave current sharing loop of a paralleled DC-DC system is presented that exhibits a considerably improved large signal performance over the presently employed, small signal designed compensators, both in terms of system response and control effort. Because of high system complexity, the present small signal designs are unable to give a good response for large load changes and line transients. Fuzzy logic, by dealing naturally with nonlinearities, offers a superior controller type, for this type of applications. The design uses a PID expert to derive the fuzzy inference rules, and simulation results show a good parameter insensitive transient response over a wide range load-step responses, e.g., from 25% to 75% of the nominal load. Current sharing control is formulated as a tracking problem and stability is ensured through adaptation or supervisory control on a Lyapunov trajectory. The technique benefits also from the heuristic approach to the problem that overcomes the complexity in modeling such systems and, hence, offers a practical engineering tool, amenable to both analog and digital implementations. / Ph. D.
4

Análise, projeto e implementação de um arranjo flexível de conversores estáticos para sistemas de conversão de energia eólica conectados à rede / Analysis, design and implementation of a flexible arrangement of static converters for wind generation grid connected systems

Grigoletto, Felipe Bovolini 29 July 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This Thesis deals with the analysis, design and implementation of a flexible arrangement of static converters for grid connected Wind Energy Conversion Systems (WECS). The main features of the proposed flexible arrangement are: (i) expanded reactive power capability limits, (ii) high efficiency mainly under low wind conditions where the active power is reduced, and (iii) low current harmonic content. The proposed arrangement has several operation modes and this Thesis proposes a methodology for selecting the redundant operation modes. This methodology estimates the lifetime of the power semiconductors in order to increase the system reliability of the wind energy conversion system. Furthermore, this Thesis proposes a hybrid modulation strategy for voltage fed converters with multiple parallel magnetically coupled legs. The proposed hybrid modulation strategy combines the benefits of space vector, such as switching sequences flexibility and the simplicity of the modulation based on the geometric approach. As a result, it is possible to obtain multilevel equivalent voltages, as well as the equal sharing among the converter leg currents. In addition, the virtual vector concept is used which leads to the determination of the voltage limits required to impose the equal sharing among the leg currents and to avoid the saturation of the coupled inductor. Experimental results are presented to support the developed analysis demonstrating the performance of the proposed flexible arrangement of converters and the proposed modulation technique. / Esta Tese trata da análise, projeto e implementação de um arranjo flexível de conversores estáticos para sistemas de conversão de energia eólica conectados à rede. As principais características do arranjo flexível proposto são: (i) expansão dos limites de capabilidade de potência reativa, (ii) alta eficiência, principalmente para condições de baixa velocidade do vento em que a potência ativa é reduzida, (iii) baixo conteúdo harmônico das correntes de saída. O arranjo flexível de conversores possui diversos modos de operação e esta Tese propõe uma metodologia para selecionar os modos de operação redundantes. Dessa forma, o método proposto estima a vida útil dos dispositivos semicondutores de potência a fim de aumentar a confiabilidade do sistema de conversão de energia eólica. Além disso, é proposta uma estratégia de modulação híbrida para conversores estáticos de potência com múltiplas pernas em paralelo acopladas magneticamente. A modulação híbrida proposta traz os benefícios da abordagem vetorial, tais como flexibilidade de escolha de sequências de comutação combinados com abordagem geométrica cuja principal vantagem é a simplicidade de implementação. Como resultado, é possível a obtenção de tensões equivalentes com múltiplos níveis, bem como o equilíbrio das correntes entre as pernas adjacentes do conversor. Para isso, é utilizado o conceito de vetores virtuais, que permitem estabelecer os limites para síntese de tensão a fim de impor o equilíbrio das correntes e evitar a saturação do indutor acoplado. Resultados experimentais são apresentados para validar e demonstrar o bom desempenho do arranjo flexível de conversores e das técnicas de modulação propostas.
5

Operation of Parallel Connected Converters as a Multilevel Converter

Kannan, Vijay 04 June 2018 (has links) (PDF)
The still increasing demand of electrical energy and the rising popularity of renewable energy sources in today's world are two important developments that necessitate the need for innovative solutions in the field of power electronics. Parallel operation of converters is one possible method in trying to bridge an increased current demand. The classical two-level converters, which are the standard in low voltage applications, are rarely adopted in medium and high voltage applications due to the voltage limits on power semiconductor devices. That is one reason for the growing popularity of multilevel converter topologies in medium and high-voltage applications. Although an increase in the number of voltage levels of a multilevel converter has its advantages, there are also challenges posed due to the increased number of switching devices. This has resulted in three-level converters being the most popular compared to converters of higher voltage levels. In this dissertation, the unified operation of parallel connected three-level converter units as a multilevel converter of higher voltage levels is proposed. The mathematical basis for operating parallel connected converter units as a single multilevel converter and the governing equations for such systems are derived. The analysis and the understanding of these equations are important for assessing practicality of the system and devising appropriate control structures. Parallel operation of converter units operating as multilevel converter have their own set of challenges, the two foremost being that of load-sharing and the possibility of circulating and cross currents. Developing solutions to address these challenges require a thorough understanding of how these manifest in the proposed system. Algorithms are then developed for tackling these issues. The control structures are designed and the developed algorithms are implemented. The operation of the system is verified experimentally. / Die weiterhin steigende Nachfrage nach elektrischer Energie und die zunehmende Verwendung erneuerbarer Energiequellen in der heutigen Welt sind zwei wichtige Entwicklungen, die die Notwendigkeit innovativer Lösungen im Bereich der Leistungselektronik erfordern. Der Parallelbetrieb von Stromrichtern ist eine mögliche Methode, um einen erhöhten Strombedarf zu decken. Der klassische Zweipunkt-Spanungszwischenkreisstromrichter, der bei Niederspannungsanwendungen weit verbreitet ist, wird aufgrund der Spannungsgrenzen für Leistungshalbleiterbauelemente zunehmend weniger in Mittel- und Hochspannungsanwendungen eingesetzt. Die begrenzte Spannungsbelastbarkeit der Leistungshalbleiterbauelemente ist ein Grund für die wachsende Beliebtheit von Mehrpunkt-Stromrichtertopologien in Mittelund Hochspannungsanwendungen. Obwohl eine Erhöhung der Anzahl der Spannungsstufen eines Mehrpunkt-Stromrichters Vorteile hat, gibt es auch Herausforderungen und Nachteile aufgrund der erhöhten Anzahl von Leistungshalbleitern. Dies hat dazu geführt, dass der Dreipunkt-Stromrichter die verbreiteste Topologie im Vergleich zu anderen Stromrichtern mit einer höheren Anzahl von Spannungsstufen ist. In dieser Dissertation wird der Betrieb von parallel geschalteten Dreipunkt-Stromrichtereinheiten als ein Mehrpunkt-Stromrichter mit erhöhter Anzahl an Spannungsstufen vorgeschlagen. Die mathematische Basis für den Betrieb von parallel geschalteten Stromrichtereinheiten als ein Mehrpunkt-Stromrichter und die beschreibenden Gleichungen eines solchen Systems werden abgeleitet. Die Analyse und das Verständnis dieser Gleichungen sind wichtig für die Beurteilung der Praktikabilität des Systems und die Erarbeitung geeigneter Regelstrukturen. Der parallele Betrieb von Stromrichtereinheiten hat seine eigenen Herausforderungen, wobei die beiden wichtigsten die Lastverteilung und die Möglichkeit von Kreis- und Querströmen sind. Die Entwicklung von Lösungen zur Bewältigung dieser Herausforderungen erfordert ein gründliches Verständnis dafür, wie sich diese Phänomene in dem vorgeschlagenen System manifestieren. Algorithmen zur Lösung dieser Probleme werden anschlieend entwickelt. Die Regelstrukturen werden entworfen und die entworfenen Algorithmen implementiert. Die Funktionsweise des Systems wird experimentell überprüft.
6

Nonlinear Analysis and Control of Standalone, Parallel DC-DC, and Parallel Multi-Phase PWM Converters

Mazumder, Sudip K. 17 August 2001 (has links)
Applications of distributed-power systems are on the rise. They are already used in telecommunication power supplies, aircraft and shipboard power-distribution systems, motor drives, plasma applications, and they are being considered for numerous other applications. The successful operation of these multi-converter systems relies heavily on a stable design. Conventional analyses of power converters are based on averaged models, which ignore the fast-scale instability and analyze the stability on a reduced-order manifold. As such, validity of the averaged models varies with the switching frequency even for the same topological structure. The prevalent procedure for analyzing the stability of switching converters is based on linearized smooth averaged (small-signal) models. Yet there are systems (in active use) that yield a non-smooth averaged model. Even for systems for which smooth averaged models are realizable, small-signal analyses of the nominal solution/orbit do not provide anything about three important characteristics: region of attraction of the nominal solution, dependence of the converter dynamics on the initial conditions of the states, and the post-instability dynamics. As such, converters designed based on small-signal analyses may be conservative. In addition, linear controllers based on such analysis may not be robust and optimal. Clearly, there is a need to analyze the stability of power converters from a different perspective and design nonlinear controllers for such hybrid systems. In this Dissertation, using bifurcation analysis and Lyapunov's method, we analyze the stability and dynamics of some of the building blocks of distributed-power systems, namely standalone, integrated, and parallel converters. Using analytical and experimental results, we show some of the differences between the conventional and new approaches for stability analyses of switching converters and demonstrate the shortcomings of some of the existing results. Furthermore, using nonlinear analyses we attempt to answer three fundamental questions: when does an instability occur, what is the mechanism of the instability, and what happens after the instability? Subsequently, we develop nonlinear controllers to stabilize parallel dc-dc and parallel multi-phase converters. The proposed controllers for parallel dc-dc converters combine the concepts of multiple-sliding-surface and integral-variable-structure control. They are easy to design, robust, and have good transient and steady-state performances. Furthermore, they achieve a constant switching frequency within the boundary layer and hence can be operated in interleaving or synchronicity modes. The controllers developed for parallel multi-phase converters retain many of the above features. In addition, they do not require any communication between the modules; as such, they have high redundancy. One of these control schemes combines space-vector modulation and variable-structure control. It achieves constant switching frequency within the boundary layer and a good compromise between the transient and steady-state performances. / Ph. D.
7

Operation of Parallel Connected Converters as a Multilevel Converter

Kannan, Vijay 11 January 2018 (has links)
The still increasing demand of electrical energy and the rising popularity of renewable energy sources in today's world are two important developments that necessitate the need for innovative solutions in the field of power electronics. Parallel operation of converters is one possible method in trying to bridge an increased current demand. The classical two-level converters, which are the standard in low voltage applications, are rarely adopted in medium and high voltage applications due to the voltage limits on power semiconductor devices. That is one reason for the growing popularity of multilevel converter topologies in medium and high-voltage applications. Although an increase in the number of voltage levels of a multilevel converter has its advantages, there are also challenges posed due to the increased number of switching devices. This has resulted in three-level converters being the most popular compared to converters of higher voltage levels. In this dissertation, the unified operation of parallel connected three-level converter units as a multilevel converter of higher voltage levels is proposed. The mathematical basis for operating parallel connected converter units as a single multilevel converter and the governing equations for such systems are derived. The analysis and the understanding of these equations are important for assessing practicality of the system and devising appropriate control structures. Parallel operation of converter units operating as multilevel converter have their own set of challenges, the two foremost being that of load-sharing and the possibility of circulating and cross currents. Developing solutions to address these challenges require a thorough understanding of how these manifest in the proposed system. Algorithms are then developed for tackling these issues. The control structures are designed and the developed algorithms are implemented. The operation of the system is verified experimentally. / Die weiterhin steigende Nachfrage nach elektrischer Energie und die zunehmende Verwendung erneuerbarer Energiequellen in der heutigen Welt sind zwei wichtige Entwicklungen, die die Notwendigkeit innovativer Lösungen im Bereich der Leistungselektronik erfordern. Der Parallelbetrieb von Stromrichtern ist eine mögliche Methode, um einen erhöhten Strombedarf zu decken. Der klassische Zweipunkt-Spanungszwischenkreisstromrichter, der bei Niederspannungsanwendungen weit verbreitet ist, wird aufgrund der Spannungsgrenzen für Leistungshalbleiterbauelemente zunehmend weniger in Mittel- und Hochspannungsanwendungen eingesetzt. Die begrenzte Spannungsbelastbarkeit der Leistungshalbleiterbauelemente ist ein Grund für die wachsende Beliebtheit von Mehrpunkt-Stromrichtertopologien in Mittelund Hochspannungsanwendungen. Obwohl eine Erhöhung der Anzahl der Spannungsstufen eines Mehrpunkt-Stromrichters Vorteile hat, gibt es auch Herausforderungen und Nachteile aufgrund der erhöhten Anzahl von Leistungshalbleitern. Dies hat dazu geführt, dass der Dreipunkt-Stromrichter die verbreiteste Topologie im Vergleich zu anderen Stromrichtern mit einer höheren Anzahl von Spannungsstufen ist. In dieser Dissertation wird der Betrieb von parallel geschalteten Dreipunkt-Stromrichtereinheiten als ein Mehrpunkt-Stromrichter mit erhöhter Anzahl an Spannungsstufen vorgeschlagen. Die mathematische Basis für den Betrieb von parallel geschalteten Stromrichtereinheiten als ein Mehrpunkt-Stromrichter und die beschreibenden Gleichungen eines solchen Systems werden abgeleitet. Die Analyse und das Verständnis dieser Gleichungen sind wichtig für die Beurteilung der Praktikabilität des Systems und die Erarbeitung geeigneter Regelstrukturen. Der parallele Betrieb von Stromrichtereinheiten hat seine eigenen Herausforderungen, wobei die beiden wichtigsten die Lastverteilung und die Möglichkeit von Kreis- und Querströmen sind. Die Entwicklung von Lösungen zur Bewältigung dieser Herausforderungen erfordert ein gründliches Verständnis dafür, wie sich diese Phänomene in dem vorgeschlagenen System manifestieren. Algorithmen zur Lösung dieser Probleme werden anschlieend entwickelt. Die Regelstrukturen werden entworfen und die entworfenen Algorithmen implementiert. Die Funktionsweise des Systems wird experimentell überprüft.

Page generated in 0.0935 seconds