• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 15
  • 15
  • 15
  • 12
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transversal I/O scheduling for parallel file systems : from applications to devices / Escalonamento de E/S transversal para sistemas de arquivos paralelos : das aplicações aos dispositivos

Boito, Francieli Zanon January 2015 (has links)
Esta tese se concentra no escalonamento de operações de entrada e saída (E/S) como uma solução para melhorar o desempenho de sistemas de arquivos paralelos, aleviando os efeitos da interferência. É usual que sistemas de computação de alto desempenho (HPC) ofereçam uma infraestrutura compartilhada de armazenamento para as aplicações. Nessa situação, em que múltiplas aplicações acessam o sistema de arquivos compartilhado de forma concorrente, os acessos das aplicações causarão interferência uns nos outros, comprometendo a eficácia de técnicas para otimização de E/S. Uma avaliação extensiva de desempenho foi conduzida, abordando cinco algoritmos de escalonamento trabalhando nos servidores de dados de um sistema de arquivos paralelo. Foram executados experimentos em diferentes plataformas e sob diferentes padrões de acesso. Os resultados indicam que os resultados obtidos pelos escalonadores são afetados pelo padrão de acesso das aplicações, já que é importante que o ganho de desempenho provido por um algoritmo de escalonamento ultrapasse o seu sobrecusto. Ao mesmo tempo, os resultados do escalonamento são afetados pelas características do subsistema local de E/S - especialmente pelos dispositivos de armazenamento. Dispositivos diferentes apresentam variados níveis de sensibilidade à sequencialidade dos acessos e ao seu tamanho, afetando o quanto técnicas de escalonamento de E/S são capazes de aumentar o desempenho. Por esses motivos, o principal objetivo desta tese é prover escalonamento de E/S com dupla adaptabilidade: às aplicações e aos dispositivos. Informações sobre o padrão de acesso das aplicações são obtidas através de arquivos de rastro, vindos de execuções anteriores. Aprendizado de máquina foi aplicado para construir um classificador capaz de identificar os aspectos espacialidade e tamanho de requisição dos padrões de acesso através de fluxos de requisições anteriores. Além disso, foi proposta uma técnica para obter eficientemente a razão entre acessos sequenciais e aleatórios para dispositivos de armazenamento, executando testes para apenas um subconjunto dos parâmetros e estimando os demais através de regressões lineares. Essas informações sobre características de aplicações e dispositivos de armazenamento são usadas para decidir a melhor escolha em algoritmo de escalonamento através de uma árvore de decisão. A abordagem proposta aumenta o desempenho em até 75% sobre uma abordagem que usa o mesmo algoritmo para todas as situações, sem adaptabilidade. Além disso, essa técnica melhora o desempenho para até 64% mais situações, e causa perdas de desempenho em até 89% menos situações. Os resultados obtidos evidenciam que ambos aspectos - aplicações e dispositivos de armazenamento - são essenciais para boas decisões de escalonamento. Adicionalmente, apesar do fato de não haver algoritmo de escalonamento capaz de prover ganhos de desempenho para todas as situações, esse trabalho mostra que através da dupla adaptabilidade é possível aplicar técnicas de escalonamento de E/S para melhorar o desempenho, evitando situações em que essas técnicas prejudicariam o desempenho. / This thesis focuses on I/O scheduling as a tool to improve I/O performance on parallel file systems by alleviating interference effects. It is usual for High Performance Computing (HPC) systems to provide a shared storage infrastructure for applications. In this situation, when multiple applications are concurrently accessing the shared parallel file system, their accesses will affect each other, compromising I/O optimization techniques’ efficacy. We have conducted an extensive performance evaluation of five scheduling algorithms at a parallel file system’s data servers. Experiments were executed on different platforms and under different access patterns. Results indicate that schedulers’ results are affected by applications’ access patterns, since it is important for the performance improvement obtained through a scheduling algorithm to surpass its overhead. At the same time, schedulers’ results are affected by the underlying I/O system characteristics - especially by storage devices. Different devices present different levels of sensitivity to accesses’ sequentiality and size, impacting on how much performance is improved through I/O scheduling. For these reasons, this thesis main objective is to provide I/O scheduling with double adaptivity: to applications and devices. We obtain information about applications’ access patterns through trace files, obtained from previous executions. We have applied machine learning to build a classifier capable of identifying access patterns’ spatiality and requests size aspects from streams of previous requests. Furthermore, we proposed an approach to efficiently obtain the sequential to random throughput ratio metric for storage devices by running benchmarks for a subset of the parameters and estimating the remaining through linear regressions. We use this information on applications’ and storage devices’ characteristics to decide the best fit in scheduling algorithm though a decision tree. Our approach improves performance by up to 75% over an approach that uses the same scheduling algorithm to all situations, without adaptability. Moreover, our approach improves performance for up to 64% more situations, and decreases performance for up to 89% less situations. Our results evidence that both aspects - applications and storage devices - are essential for making good scheduling choices. Moreover, despite the fact that there is no scheduling algorithm able to provide performance gains for all situations, we show that through double adaptivity it is possible to apply I/O scheduling techniques to improve performance, avoiding situations where it would lead to performance impairment.
2

Transversal I/O scheduling for parallel file systems : from applications to devices / Escalonamento de E/S transversal para sistemas de arquivos paralelos : das aplicações aos dispositivos

Boito, Francieli Zanon January 2015 (has links)
Esta tese se concentra no escalonamento de operações de entrada e saída (E/S) como uma solução para melhorar o desempenho de sistemas de arquivos paralelos, aleviando os efeitos da interferência. É usual que sistemas de computação de alto desempenho (HPC) ofereçam uma infraestrutura compartilhada de armazenamento para as aplicações. Nessa situação, em que múltiplas aplicações acessam o sistema de arquivos compartilhado de forma concorrente, os acessos das aplicações causarão interferência uns nos outros, comprometendo a eficácia de técnicas para otimização de E/S. Uma avaliação extensiva de desempenho foi conduzida, abordando cinco algoritmos de escalonamento trabalhando nos servidores de dados de um sistema de arquivos paralelo. Foram executados experimentos em diferentes plataformas e sob diferentes padrões de acesso. Os resultados indicam que os resultados obtidos pelos escalonadores são afetados pelo padrão de acesso das aplicações, já que é importante que o ganho de desempenho provido por um algoritmo de escalonamento ultrapasse o seu sobrecusto. Ao mesmo tempo, os resultados do escalonamento são afetados pelas características do subsistema local de E/S - especialmente pelos dispositivos de armazenamento. Dispositivos diferentes apresentam variados níveis de sensibilidade à sequencialidade dos acessos e ao seu tamanho, afetando o quanto técnicas de escalonamento de E/S são capazes de aumentar o desempenho. Por esses motivos, o principal objetivo desta tese é prover escalonamento de E/S com dupla adaptabilidade: às aplicações e aos dispositivos. Informações sobre o padrão de acesso das aplicações são obtidas através de arquivos de rastro, vindos de execuções anteriores. Aprendizado de máquina foi aplicado para construir um classificador capaz de identificar os aspectos espacialidade e tamanho de requisição dos padrões de acesso através de fluxos de requisições anteriores. Além disso, foi proposta uma técnica para obter eficientemente a razão entre acessos sequenciais e aleatórios para dispositivos de armazenamento, executando testes para apenas um subconjunto dos parâmetros e estimando os demais através de regressões lineares. Essas informações sobre características de aplicações e dispositivos de armazenamento são usadas para decidir a melhor escolha em algoritmo de escalonamento através de uma árvore de decisão. A abordagem proposta aumenta o desempenho em até 75% sobre uma abordagem que usa o mesmo algoritmo para todas as situações, sem adaptabilidade. Além disso, essa técnica melhora o desempenho para até 64% mais situações, e causa perdas de desempenho em até 89% menos situações. Os resultados obtidos evidenciam que ambos aspectos - aplicações e dispositivos de armazenamento - são essenciais para boas decisões de escalonamento. Adicionalmente, apesar do fato de não haver algoritmo de escalonamento capaz de prover ganhos de desempenho para todas as situações, esse trabalho mostra que através da dupla adaptabilidade é possível aplicar técnicas de escalonamento de E/S para melhorar o desempenho, evitando situações em que essas técnicas prejudicariam o desempenho. / This thesis focuses on I/O scheduling as a tool to improve I/O performance on parallel file systems by alleviating interference effects. It is usual for High Performance Computing (HPC) systems to provide a shared storage infrastructure for applications. In this situation, when multiple applications are concurrently accessing the shared parallel file system, their accesses will affect each other, compromising I/O optimization techniques’ efficacy. We have conducted an extensive performance evaluation of five scheduling algorithms at a parallel file system’s data servers. Experiments were executed on different platforms and under different access patterns. Results indicate that schedulers’ results are affected by applications’ access patterns, since it is important for the performance improvement obtained through a scheduling algorithm to surpass its overhead. At the same time, schedulers’ results are affected by the underlying I/O system characteristics - especially by storage devices. Different devices present different levels of sensitivity to accesses’ sequentiality and size, impacting on how much performance is improved through I/O scheduling. For these reasons, this thesis main objective is to provide I/O scheduling with double adaptivity: to applications and devices. We obtain information about applications’ access patterns through trace files, obtained from previous executions. We have applied machine learning to build a classifier capable of identifying access patterns’ spatiality and requests size aspects from streams of previous requests. Furthermore, we proposed an approach to efficiently obtain the sequential to random throughput ratio metric for storage devices by running benchmarks for a subset of the parameters and estimating the remaining through linear regressions. We use this information on applications’ and storage devices’ characteristics to decide the best fit in scheduling algorithm though a decision tree. Our approach improves performance by up to 75% over an approach that uses the same scheduling algorithm to all situations, without adaptability. Moreover, our approach improves performance for up to 64% more situations, and decreases performance for up to 89% less situations. Our results evidence that both aspects - applications and storage devices - are essential for making good scheduling choices. Moreover, despite the fact that there is no scheduling algorithm able to provide performance gains for all situations, we show that through double adaptivity it is possible to apply I/O scheduling techniques to improve performance, avoiding situations where it would lead to performance impairment.
3

Transversal I/O scheduling for parallel file systems : from applications to devices / Escalonamento de E/S transversal para sistemas de arquivos paralelos : das aplicações aos dispositivos

Boito, Francieli Zanon January 2015 (has links)
Esta tese se concentra no escalonamento de operações de entrada e saída (E/S) como uma solução para melhorar o desempenho de sistemas de arquivos paralelos, aleviando os efeitos da interferência. É usual que sistemas de computação de alto desempenho (HPC) ofereçam uma infraestrutura compartilhada de armazenamento para as aplicações. Nessa situação, em que múltiplas aplicações acessam o sistema de arquivos compartilhado de forma concorrente, os acessos das aplicações causarão interferência uns nos outros, comprometendo a eficácia de técnicas para otimização de E/S. Uma avaliação extensiva de desempenho foi conduzida, abordando cinco algoritmos de escalonamento trabalhando nos servidores de dados de um sistema de arquivos paralelo. Foram executados experimentos em diferentes plataformas e sob diferentes padrões de acesso. Os resultados indicam que os resultados obtidos pelos escalonadores são afetados pelo padrão de acesso das aplicações, já que é importante que o ganho de desempenho provido por um algoritmo de escalonamento ultrapasse o seu sobrecusto. Ao mesmo tempo, os resultados do escalonamento são afetados pelas características do subsistema local de E/S - especialmente pelos dispositivos de armazenamento. Dispositivos diferentes apresentam variados níveis de sensibilidade à sequencialidade dos acessos e ao seu tamanho, afetando o quanto técnicas de escalonamento de E/S são capazes de aumentar o desempenho. Por esses motivos, o principal objetivo desta tese é prover escalonamento de E/S com dupla adaptabilidade: às aplicações e aos dispositivos. Informações sobre o padrão de acesso das aplicações são obtidas através de arquivos de rastro, vindos de execuções anteriores. Aprendizado de máquina foi aplicado para construir um classificador capaz de identificar os aspectos espacialidade e tamanho de requisição dos padrões de acesso através de fluxos de requisições anteriores. Além disso, foi proposta uma técnica para obter eficientemente a razão entre acessos sequenciais e aleatórios para dispositivos de armazenamento, executando testes para apenas um subconjunto dos parâmetros e estimando os demais através de regressões lineares. Essas informações sobre características de aplicações e dispositivos de armazenamento são usadas para decidir a melhor escolha em algoritmo de escalonamento através de uma árvore de decisão. A abordagem proposta aumenta o desempenho em até 75% sobre uma abordagem que usa o mesmo algoritmo para todas as situações, sem adaptabilidade. Além disso, essa técnica melhora o desempenho para até 64% mais situações, e causa perdas de desempenho em até 89% menos situações. Os resultados obtidos evidenciam que ambos aspectos - aplicações e dispositivos de armazenamento - são essenciais para boas decisões de escalonamento. Adicionalmente, apesar do fato de não haver algoritmo de escalonamento capaz de prover ganhos de desempenho para todas as situações, esse trabalho mostra que através da dupla adaptabilidade é possível aplicar técnicas de escalonamento de E/S para melhorar o desempenho, evitando situações em que essas técnicas prejudicariam o desempenho. / This thesis focuses on I/O scheduling as a tool to improve I/O performance on parallel file systems by alleviating interference effects. It is usual for High Performance Computing (HPC) systems to provide a shared storage infrastructure for applications. In this situation, when multiple applications are concurrently accessing the shared parallel file system, their accesses will affect each other, compromising I/O optimization techniques’ efficacy. We have conducted an extensive performance evaluation of five scheduling algorithms at a parallel file system’s data servers. Experiments were executed on different platforms and under different access patterns. Results indicate that schedulers’ results are affected by applications’ access patterns, since it is important for the performance improvement obtained through a scheduling algorithm to surpass its overhead. At the same time, schedulers’ results are affected by the underlying I/O system characteristics - especially by storage devices. Different devices present different levels of sensitivity to accesses’ sequentiality and size, impacting on how much performance is improved through I/O scheduling. For these reasons, this thesis main objective is to provide I/O scheduling with double adaptivity: to applications and devices. We obtain information about applications’ access patterns through trace files, obtained from previous executions. We have applied machine learning to build a classifier capable of identifying access patterns’ spatiality and requests size aspects from streams of previous requests. Furthermore, we proposed an approach to efficiently obtain the sequential to random throughput ratio metric for storage devices by running benchmarks for a subset of the parameters and estimating the remaining through linear regressions. We use this information on applications’ and storage devices’ characteristics to decide the best fit in scheduling algorithm though a decision tree. Our approach improves performance by up to 75% over an approach that uses the same scheduling algorithm to all situations, without adaptability. Moreover, our approach improves performance for up to 64% more situations, and decreases performance for up to 89% less situations. Our results evidence that both aspects - applications and storage devices - are essential for making good scheduling choices. Moreover, despite the fact that there is no scheduling algorithm able to provide performance gains for all situations, we show that through double adaptivity it is possible to apply I/O scheduling techniques to improve performance, avoiding situations where it would lead to performance impairment.
4

Scalable Data Management for Object-based Storage Systems

Wadhwa, Bharti 19 August 2020 (has links)
Parallel I/O performance is crucial to sustain scientific applications on large-scale High-Performance Computing (HPC) systems. Large scale distributed storage systems, in particular the object-based storage systems, face severe challenges for managing the data efficiently. Inefficient data management leads to poor I/O and storage performance in HPC applications and scientific workflows. Some of the main challenges for efficient data management arise from poor resource allocation, load imbalance in object storage targets, and inflexible data sharing between applications in a workflow. In addition, parallel I/O makes it challenging to shoehorn new interfaces, such as taking advantage of multiple layers of storage and support for analysis in the data path. Solving these challenges to improve performance and efficiency of object-based storage systems is crucial, especially for upcoming era of exascale systems. This dissertation is focused on solving these major challenges in object-based storage systems by providing scalable data management strategies. In the first part of the dis-sertation (Chapter 3), we present a resource contention aware load balancing tool (iez) for large scale distributed object-based storage systems. In Chapter 4, we extend iez to support Progressive File Layout for object-based storage system: Lustre. In the second part (Chapter 5), we present a technique to facilitate data sharing in scientific workflows using object-based storage, with our proposed tool Workflow Data Communicator. In the last part of this dissertation, we present a solution for transparent data management in multi-layer storage hierarchy of present and next-generation HPC systems.This dissertation shows that by intelligently employing scalable data management techniques, scientific applications' and workflows' flexibility and performance in object-based storage systems can be enhanced manyfold. Our proposed data management strategies can guide next-generation HPC storage systems' software design to efficiently support data for scientific applications and workflows. / Doctor of Philosophy / Large scale object-based storage systems face severe challenges to manage the data efficiently for HPC applications and workflows. These storage systems often manage and share data inflexibly, without considering the load imbalance and resource contention in the underlying multi-layer storage hierarchy. This dissertation first studies how resource contention and inflexible data sharing mechanisms impact HPC applications' storage and I/O performance; and then presents a series of efficient techniques, tools and algorithms to provide efficient and scalable data management for current and next-generation HPC storage systems
5

On the Use of Containers in High Performance Computing

Abraham, Subil 09 July 2020 (has links)
The lightweight, portable, and flexible nature of containers is driving their widespread adoption in cloud solutions. Data analysis and deep learning applications have especially benefited from containerized solutions. As such data analysis is also being utilized in the high performance computing (HPC) domain, the need for container support in HPC has become paramount. However, container adoption in HPC face crucial performance and I/O challenges. One obstacle is that while there have been container solutions for HPC, such solutions have not been thoroughly investigated, especially from the aspect of their impact on the crucial I/O throughput needs of HPC. To this end, this paper provides a first-of-its-kind empirical analysis of state-of-the-art representative container solutions (Docker, Podman, Singularity, and Charliecloud) in HPC environments, especially how containers interact with the HPC storage systems. We present the design of an analysis framework that is deployed on all nodes in an HPC environment, and captures aspects such as CPU, memory, network, and file I/O statistics from the nodes and the storage system. We are able to garner key insights from our analysis, e.g., Charliecloud outperforms other container solutions in terms of container start-up time, while Singularity and Charliecloud are equivalent in I/O throughput. But this comes at a cost, as Charliecloud invokes the most metadata and I/O operations on the underlying Lustre file system. By identifying such optimization opportunities, we can enhance performance of containers atop HPC and help the aforementioned applications. / Master of Science / Containers are a technology that allow for applications to be packaged along with its ideal environment, all the way down to its preferred operating system. This allows an application to run anywhere that can support containers without a huge hit to the application performance. Hence containers have seen wide adoption for use in the cloud. These qualities have also made it very appealing for use in the world of scientific research in national labs. Modern research heavily relies on the power of computing in order to model, simulate, and test the behavior of real world entities, often making use of large amounts of data and utilizing machine learning and deep learning. Doing this often requires the high performance computing power found in supercomputers. In most cases, scientists just want to be able to write their code and expect it to just work. Their applications might depend on other source code that form part of their standard toolkit and would expect to also be installed in the supercomputing environment. This may not always be the case, taking the scientist's focus away from their work in order ensure their requirements are set up in the supercomputing environment which might require extensive cooperation with the operations team responsible for the supercomputers. Containers easily solve this problem because it can package everything together. However, the use of containers in these environments have not been extensively tested, especially for applications that are very heavy on the analysis of large quantities of data. To fill this gap, this work analyzes the performance of several state-of-the-art container technologies (Docker, Podman, Singularity, Charliecloud), with a particular focus on its interaction with the Lustre data storage systems widely used in supercomputing environments. As part of this work, we design an analysis setup that captures the behavior of various aspects of the high performance computing environment like CPU, memory, network usage and data movement while using containers to run data heavy applications. We garner important insights about their performance that can help inform the best choice of container technology given an environment and the kind of application that needs to be run.
6

Rethinking I/O in High-Performance Computing Environments

Ali, Nawab January 2009 (has links)
No description available.
7

An Application-Attuned Framework for Optimizing HPC Storage Systems

Paul, Arnab Kumar 19 August 2020 (has links)
High performance computing (HPC) is routinely employed in diverse domains such as life sciences, and Geology, to simulate and understand the behavior of complex phenomena. Big data driven scientific simulations are resource intensive and require both computing and I/O capabilities at scale. There is a crucial need for revisiting the HPC I/O subsystem to better optimize for and manage the increased pressure on the underlying storage systems from big data processing. Extant HPC storage systems are designed and tuned for a specific set of applications targeting a range of workload characteristics, but they lack the flexibility in adapting to the ever-changing application behaviors. The complex nature of modern HPC storage systems along with the ever-changing application behaviors present unique opportunities and engineering challenges. In this dissertation, we design and develop a framework for optimizing HPC storage systems by making them application-attuned. We select three different kinds of HPC storage systems - in-memory data analytics frameworks, parallel file systems and object storage. We first analyze the HPC application I/O behavior by studying real-world I/O traces. Next we optimize parallelism for applications running in-memory, then we design data management techniques for HPC storage systems, and finally focus on low-level I/O load balance for improving the efficiency of modern HPC storage systems. / Doctor of Philosophy / Clusters of multiple computers connected through internet are often deployed in industry and laboratories for large scale data processing or computation that cannot be handled by standalone computers. In such a cluster, resources such as CPU, memory, disks are integrated to work together. With the increase in popularity of applications that read and write a tremendous amount of data, we need a large number of disks that can interact effectively in such clusters. This forms the part of high performance computing (HPC) storage systems. Such HPC storage systems are used by a diverse set of applications coming from organizations from a vast range of domains from earth sciences, financial services, telecommunication to life sciences. Therefore, the HPC storage system should be efficient to perform well for the different read and write (I/O) requirements from all the different sets of applications. But current HPC storage systems do not cater to the varied I/O requirements. To this end, this dissertation designs and develops a framework for HPC storage systems that is application-attuned and thus provides much improved performance than other state-of-the-art HPC storage systems without such optimizations.
8

Evaluating I/O scheduling techniques at the forwarding layer and coordinating data server accesses / Avaliação de técnicas de escalonamento de E/S na camada de encaminhamento e coordenação de acesso aos servidores de dados

Bez, Jean Luca January 2016 (has links)
Em ambientes de Computação de Alto Desempenho, as aplicações científicas dependem dos Sistemas de Arquivos Paralelos (SAP) para obter desempenho de Entrada/Saída (E/S), especialmente ao lidar com grandes quantidades de dados. No entanto, E/S ainda é um gargalo para um número crescente de aplicações, devido à diferença histórica entre a velocidade de processamento e de acesso aos dados. Para aliviar a concorrência causada por milhares de nós que acessam um número significativamente menor de servidores SAP, normalmente nós intermediários de E/S são adicionados entre os nós de processamento e o sistema de arquivos. Cada nó intermediário encaminha solicitações de vários clientes para o sistema, uma configuração que dá a este componente a oportunidade de executar otimizações como o escalonamento de requisições de E/S. O objetivo desta dissertação é avaliar diferentes algoritmos de escalonamento, na camada de encaminhamento de E/S, cuja finalidade é melhorar o padrão de acesso das aplicações, agregando e reordenando requisições para evitar padrões que são conhecidos por prejudicar o desempenho. Demonstramos que os escalonadores FIFO (First In, First Out), HBRR (Handle-Based Round-Robin), TO (Time Order), SJF (Shortest Job First) e MLF (Multilevel Feedback) são apenas parcialmente eficazes porque o padrão de acesso não é o principal fator que afeta o desempenho na camada de encaminhamento de E/S, especialmente para requisições de leitura Um novo algoritmo de escalonamento chamado TWINS é proposto para coordenar o acesso de nós intermediários de E/S aos servidores de dados do sistema de arquivos paralelo. Nossa abordagem reduz a concorrência nos servidores de dados, um fator previamente demonstrado como reponsável por afetar negativamente o desempenho. O algoritmo proposto é capaz de melhorar o tempo de leitura de arquivos compartilhados em até 28% se comparado a outros algoritmos de escalonamento e em até 50% se comparado a não fazer o encaminhamento de requisições de E/S. / In High Performance Computing (HPC) environments, scientific applications rely on Parallel File Systems (PFS) to obtain Input/Output (I/O) performance especially when handling large amounts of data. However, I/O is still a bottleneck for an increasing number of applications, due to the historical gap between processing and data access speed. To alleviate the concurrency caused by thousands of nodes accessing a significantly smaller number of PFS servers, intermediate I/O nodes are typically employed between processing nodes and the file system. Each intermediate node forwards requests from multiple clients to the parallel file system, a setup which gives this component the opportunity to perform optimizations like I/O scheduling. The objective of this dissertation is to evaluate different scheduling algorithms, at the I/O forwarding layer, that work to improve concurrent access patterns by aggregating and reordering requests to avoid patterns known to harm performance. We demonstrate that the FIFO (First In, First Out), HBRR (Handle- Based Round-Robin), TO (Time Order), SJF (Shortest Job First) and MLF (Multilevel Feedback) schedulers are only partially effective because the access pattern is not the main factor that affects performance in the I/O forwarding layer, especially for read requests. A new scheduling algorithm, TWINS, is proposed to coordinate the access of intermediate I/O nodes to the parallel file system data servers. Our approach decreases concurrency at the data servers, a factor previously proven to negatively affect performance. The proposed algorithm is able to improve read performance from shared files by up to 28% over other scheduling algorithms and by up to 50% over not forwarding I/O requests.
9

Ordonnancement de E/S transversal : des applications à des dispositifs / Transversal I/O Scheduling : from Applications to Devices / Escalonamento de E/S Transversal para Sistemas de Arquivos Paralelos : das Aplicações aos Dispositivos

Zanon Boito, Francieli 30 March 2015 (has links)
Ordonnancement d’E/S Transversal pour les Systèmes de Fichiers Parallèles : desApplications aux DispositifsCette thèse porte sur l’utilisation de l’ordonnancement d’Entrées/Sorties (E/S) pour atténuer leseffets d’interférence et améliorer la performance d’E/S des systèmes de fichiers parallèles. Ilest commun pour les plates-formes de calcul haute performance (HPC) de fournir une infrastructurede stockage partagée pour les applications qui y sont hébergées. Dans cette situation,où plusieurs applications accèdent simultanément au système de fichiers parallèle partagé, leursaccès vont souffrir de l’interférence, ce qui compromet l’efficacité des stratégies d’optimisationd’E/S.Nous avons évalué la performance de cinq algorithmes d’ordonnancement dans les serveurs dedonnées d’un système de fichiers parallèle. Ces tests ont été exécutés sur différentes platesformeset sous différents modèles d’accès. Les résultats indiquent que la performance des ordonnanceursest affectée par les modèles d’accès des applications, car il est important pouraméliorer la performance obtenue grâce à un algorithme d’ordonnancement de surpasser sessurcoûts. En même temps, les résultats des ordonnanceurs sont affectés par les caractéristiquesdu système d’E/S sous-jacent - en particulier par des dispositifs de stockage. Différents dispositifsprésentent des niveaux de sensibilité à la séquentialité et la taille des accès distincts, ce quipeut influencer sur le niveau d’amélioration de obtenue grâce à l’ordonnancement d’E/S.Pour ces raisons, l’objectif principal de cette thèse est de proposer un modèle d’ordonnancementd’E/S avec une double adaptabilité : aux applications et aux dispositifs. Nous avons extraitdes informations sur les modèles d’accès des applications en utilisant des fichiers de trace,obtenus à partir de leurs exécutions précédentes. Ensuite, nous avons utilisé de l’apprentissageautomatique pour construire un classificateur capable d’identifier la spatialité et la taille desaccès à partir du flux de demandes antérieures. En outre, nous avons proposé une approche pourobtenir efficacement le ratio de débit séquentiel et aléatoire pour les dispositifs de stockage enexécutant des benchmarks pour un sous-ensemble des paramètres et en estimant les restantsavec des régressions linéaires.Nous avons utilisé les informations sur les caractéristiques des applications et des dispositifsde stockage pour décider automatiquement l’algorithme d’ordonnancement le plus appropriéen utilisant des arbres de décision. Notre approche améliore les performances jusqu’à 75% parrapport à une approche qui utilise le même algorithme d’ordonnancement dans toutes les situations,sans capacité d’adaptation. De plus, notre approche améliore la performance dans 64%de scénarios en plus, et diminue les performances dans 89% moins de situations. Nos résultatsmontrent que les deux aspects - des applications et des dispositifs - sont essentiels pour faire desbons choix d’ordonnancement. En outre, malgré le fait qu’il n’y a pas d’algorithme d’ordonnancementqui fournit des gains de performance pour toutes les situations, nous montrons queavec la double adaptabilité il est possible d’appliquer des techniques d’ordonnancement d’E/Spour améliorer la performance, tout en évitant les situations où cela conduirait à une diminutionde performance. / This thesis focuses on I/O scheduling as a tool to improve I/O performance on parallel file systemsby alleviating interference effects. It is usual for High Performance Computing (HPC)systems to provide a shared storage infrastructure for applications. In this situation, when multipleapplications are concurrently accessing the shared parallel file system, their accesses willaffect each other, compromising I/O optimization techniques’ efficacy.We have conducted an extensive performance evaluation of five scheduling algorithms at aparallel file system’s data servers. Experiments were executed on different platforms and underdifferent access patterns. Results indicate that schedulers’ results are affected by applications’access patterns, since it is important for the performance improvement obtained througha scheduling algorithm to surpass its overhead. At the same time, schedulers’ results are affectedby the underlying I/O system characteristics - especially by storage devices. Differentdevices present different levels of sensitivity to accesses’ sequentiality and size, impacting onhow much performance is improved through I/O scheduling.For these reasons, this thesis main objective is to provide I/O scheduling with double adaptivity:to applications and devices. We obtain information about applications’ access patternsthrough trace files, obtained from previous executions. We have applied machine learning tobuild a classifier capable of identifying access patterns’ spatiality and requests size aspects fromstreams of previous requests. Furthermore, we proposed an approach to efficiently obtain thesequential to random throughput ratio metric for storage devices by running benchmarks for asubset of the parameters and estimating the remaining through linear regressions.We use this information on applications’ and storage devices’ characteristics to decide the bestfit in scheduling algorithm though a decision tree. Our approach improves performance byup to 75% over an approach that uses the same scheduling algorithm to all situations, withoutadaptability. Moreover, our approach improves performance for up to 64% more situations, anddecreases performance for up to 89% less situations. Our results evidence that both aspects- applications and storage devices - are essential for making good scheduling choices. Moreover,despite the fact that there is no scheduling algorithm able to provide performance gainsfor all situations, we show that through double adaptivity it is possible to apply I/O schedulingtechniques to improve performance, avoiding situations where it would lead to performanceimpairment. / Esta tese se concentra no escalonamento de operações de entrada e saída (E/S) como uma soluçãopara melhorar o desempenho de sistemas de arquivos paralelos, aleviando os efeitos dainterferência. É usual que sistemas de computação de alto desempenho (HPC) ofereçam umainfraestrutura compartilhada de armazenamento para as aplicações. Nessa situação, em quemúltiplas aplicações acessam o sistema de arquivos compartilhado de forma concorrente, osacessos das aplicações causarão interferência uns nos outros, comprometendo a eficácia de técnicaspara otimização de E/S.Uma avaliação extensiva de desempenho foi conduzida, abordando cinco algoritmos de escalonamentotrabalhando nos servidores de dados de um sistema de arquivos paralelo. Foramexecutados experimentos em diferentes plataformas e sob diferentes padrões de acesso. Osresultados indicam que os resultados obtidos pelos escalonadores são afetados pelo padrão deacesso das aplicações, já que é importante que o ganho de desempenho provido por um algoritmode escalonamento ultrapasse o seu sobrecusto. Ao mesmo tempo, os resultados doescalonamento são afetados pelas características do subsistema local de E/S - especialmentepelos dispositivos de armazenamento. Dispositivos diferentes apresentam variados níveis desensibilidade à sequencialidade dos acessos e ao seu tamanho, afetando o quanto técnicas deescalonamento de E/S são capazes de aumentar o desempenho.Por esses motivos, o principal objetivo desta tese é prover escalonamento de E/S com duplaadaptabilidade: às aplicações e aos dispositivos. Informações sobre o padrão de acesso dasaplicações são obtidas através de arquivos de rastro, vindos de execuções anteriores. Aprendizadode máquina foi aplicado para construir um classificador capaz de identificar os aspectosespacialidade e tamanho de requisição dos padrões de acesso através de fluxos de requisiçõesanteriores. Além disso, foi proposta uma técnica para obter eficientemente a razão entre acessossequenciais e aleatórios para dispositivos de armazenamento, executando testes para apenas umsubconjunto dos parâmetros e estimando os demais através de regressões lineares.Essas informações sobre características de aplicações e dispositivos de armazenamento são usadaspara decidir a melhor escolha em algoritmo de escalonamento através de uma árvore dedecisão. A abordagem proposta aumenta o desempenho em até 75% sobre uma abordagem queusa o mesmo algoritmo para todas as situações, sem adaptabilidade. Além disso, essa técnicamelhora o desempenho para até 64% mais situações, e causa perdas de desempenho em até 89%menos situações. Os resultados obtidos evidenciam que ambos aspectos - aplicações e dispositivosde armazenamento - são essenciais para boas decisões de escalonamento. Adicionalmente,apesar do fato de não haver algoritmo de escalonamento capaz de prover ganhos de desempenhopara todas as situações, esse trabalho mostra que através da dupla adaptabilidade é possívelaplicar técnicas de escalonamento de E/S para melhorar o desempenho, evitando situações emque essas técnicas prejudicariam o desempenho.
10

Ordonnancement de E/S transversal : des applications à des dispositifs / Transversal I/O Scheduling : from Applications to Devices / Escalonamento de E/S Transversal para Sistemas de Arquivos Paralelos : das Aplicações aos Dispositivos

Zanon Boito, Francieli 30 March 2015 (has links)
Ordonnancement d’E/S Transversal pour les Systèmes de Fichiers Parallèles : desApplications aux DispositifsCette thèse porte sur l’utilisation de l’ordonnancement d’Entrées/Sorties (E/S) pour atténuer leseffets d’interférence et améliorer la performance d’E/S des systèmes de fichiers parallèles. Ilest commun pour les plates-formes de calcul haute performance (HPC) de fournir une infrastructurede stockage partagée pour les applications qui y sont hébergées. Dans cette situation,où plusieurs applications accèdent simultanément au système de fichiers parallèle partagé, leursaccès vont souffrir de l’interférence, ce qui compromet l’efficacité des stratégies d’optimisationd’E/S.Nous avons évalué la performance de cinq algorithmes d’ordonnancement dans les serveurs dedonnées d’un système de fichiers parallèle. Ces tests ont été exécutés sur différentes platesformeset sous différents modèles d’accès. Les résultats indiquent que la performance des ordonnanceursest affectée par les modèles d’accès des applications, car il est important pouraméliorer la performance obtenue grâce à un algorithme d’ordonnancement de surpasser sessurcoûts. En même temps, les résultats des ordonnanceurs sont affectés par les caractéristiquesdu système d’E/S sous-jacent - en particulier par des dispositifs de stockage. Différents dispositifsprésentent des niveaux de sensibilité à la séquentialité et la taille des accès distincts, ce quipeut influencer sur le niveau d’amélioration de obtenue grâce à l’ordonnancement d’E/S.Pour ces raisons, l’objectif principal de cette thèse est de proposer un modèle d’ordonnancementd’E/S avec une double adaptabilité : aux applications et aux dispositifs. Nous avons extraitdes informations sur les modèles d’accès des applications en utilisant des fichiers de trace,obtenus à partir de leurs exécutions précédentes. Ensuite, nous avons utilisé de l’apprentissageautomatique pour construire un classificateur capable d’identifier la spatialité et la taille desaccès à partir du flux de demandes antérieures. En outre, nous avons proposé une approche pourobtenir efficacement le ratio de débit séquentiel et aléatoire pour les dispositifs de stockage enexécutant des benchmarks pour un sous-ensemble des paramètres et en estimant les restantsavec des régressions linéaires.Nous avons utilisé les informations sur les caractéristiques des applications et des dispositifsde stockage pour décider automatiquement l’algorithme d’ordonnancement le plus appropriéen utilisant des arbres de décision. Notre approche améliore les performances jusqu’à 75% parrapport à une approche qui utilise le même algorithme d’ordonnancement dans toutes les situations,sans capacité d’adaptation. De plus, notre approche améliore la performance dans 64%de scénarios en plus, et diminue les performances dans 89% moins de situations. Nos résultatsmontrent que les deux aspects - des applications et des dispositifs - sont essentiels pour faire desbons choix d’ordonnancement. En outre, malgré le fait qu’il n’y a pas d’algorithme d’ordonnancementqui fournit des gains de performance pour toutes les situations, nous montrons queavec la double adaptabilité il est possible d’appliquer des techniques d’ordonnancement d’E/Spour améliorer la performance, tout en évitant les situations où cela conduirait à une diminutionde performance. / This thesis focuses on I/O scheduling as a tool to improve I/O performance on parallel file systemsby alleviating interference effects. It is usual for High Performance Computing (HPC)systems to provide a shared storage infrastructure for applications. In this situation, when multipleapplications are concurrently accessing the shared parallel file system, their accesses willaffect each other, compromising I/O optimization techniques’ efficacy.We have conducted an extensive performance evaluation of five scheduling algorithms at aparallel file system’s data servers. Experiments were executed on different platforms and underdifferent access patterns. Results indicate that schedulers’ results are affected by applications’access patterns, since it is important for the performance improvement obtained througha scheduling algorithm to surpass its overhead. At the same time, schedulers’ results are affectedby the underlying I/O system characteristics - especially by storage devices. Differentdevices present different levels of sensitivity to accesses’ sequentiality and size, impacting onhow much performance is improved through I/O scheduling.For these reasons, this thesis main objective is to provide I/O scheduling with double adaptivity:to applications and devices. We obtain information about applications’ access patternsthrough trace files, obtained from previous executions. We have applied machine learning tobuild a classifier capable of identifying access patterns’ spatiality and requests size aspects fromstreams of previous requests. Furthermore, we proposed an approach to efficiently obtain thesequential to random throughput ratio metric for storage devices by running benchmarks for asubset of the parameters and estimating the remaining through linear regressions.We use this information on applications’ and storage devices’ characteristics to decide the bestfit in scheduling algorithm though a decision tree. Our approach improves performance byup to 75% over an approach that uses the same scheduling algorithm to all situations, withoutadaptability. Moreover, our approach improves performance for up to 64% more situations, anddecreases performance for up to 89% less situations. Our results evidence that both aspects- applications and storage devices - are essential for making good scheduling choices. Moreover,despite the fact that there is no scheduling algorithm able to provide performance gainsfor all situations, we show that through double adaptivity it is possible to apply I/O schedulingtechniques to improve performance, avoiding situations where it would lead to performanceimpairment. / Esta tese se concentra no escalonamento de operações de entrada e saída (E/S) como uma soluçãopara melhorar o desempenho de sistemas de arquivos paralelos, aleviando os efeitos dainterferência. É usual que sistemas de computação de alto desempenho (HPC) ofereçam umainfraestrutura compartilhada de armazenamento para as aplicações. Nessa situação, em quemúltiplas aplicações acessam o sistema de arquivos compartilhado de forma concorrente, osacessos das aplicações causarão interferência uns nos outros, comprometendo a eficácia de técnicaspara otimização de E/S.Uma avaliação extensiva de desempenho foi conduzida, abordando cinco algoritmos de escalonamentotrabalhando nos servidores de dados de um sistema de arquivos paralelo. Foramexecutados experimentos em diferentes plataformas e sob diferentes padrões de acesso. Osresultados indicam que os resultados obtidos pelos escalonadores são afetados pelo padrão deacesso das aplicações, já que é importante que o ganho de desempenho provido por um algoritmode escalonamento ultrapasse o seu sobrecusto. Ao mesmo tempo, os resultados doescalonamento são afetados pelas características do subsistema local de E/S - especialmentepelos dispositivos de armazenamento. Dispositivos diferentes apresentam variados níveis desensibilidade à sequencialidade dos acessos e ao seu tamanho, afetando o quanto técnicas deescalonamento de E/S são capazes de aumentar o desempenho.Por esses motivos, o principal objetivo desta tese é prover escalonamento de E/S com duplaadaptabilidade: às aplicações e aos dispositivos. Informações sobre o padrão de acesso dasaplicações são obtidas através de arquivos de rastro, vindos de execuções anteriores. Aprendizadode máquina foi aplicado para construir um classificador capaz de identificar os aspectosespacialidade e tamanho de requisição dos padrões de acesso através de fluxos de requisiçõesanteriores. Além disso, foi proposta uma técnica para obter eficientemente a razão entre acessossequenciais e aleatórios para dispositivos de armazenamento, executando testes para apenas umsubconjunto dos parâmetros e estimando os demais através de regressões lineares.Essas informações sobre características de aplicações e dispositivos de armazenamento são usadaspara decidir a melhor escolha em algoritmo de escalonamento através de uma árvore dedecisão. A abordagem proposta aumenta o desempenho em até 75% sobre uma abordagem queusa o mesmo algoritmo para todas as situações, sem adaptabilidade. Além disso, essa técnicamelhora o desempenho para até 64% mais situações, e causa perdas de desempenho em até 89%menos situações. Os resultados obtidos evidenciam que ambos aspectos - aplicações e dispositivosde armazenamento - são essenciais para boas decisões de escalonamento. Adicionalmente,apesar do fato de não haver algoritmo de escalonamento capaz de prover ganhos de desempenhopara todas as situações, esse trabalho mostra que através da dupla adaptabilidade é possívelaplicar técnicas de escalonamento de E/S para melhorar o desempenho, evitando situações emque essas técnicas prejudicariam o desempenho.

Page generated in 0.0744 seconds