• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 92
  • 35
  • 32
  • 10
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 812
  • 812
  • 126
  • 119
  • 116
  • 99
  • 85
  • 81
  • 73
  • 70
  • 67
  • 63
  • 61
  • 58
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

ON-LINE PARAMETER ESTIMATION AND ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MACHINES

Underwood, Samuel J. 17 May 2006 (has links)
No description available.
82

Maximization of propylene in an industrial FCC unit

John, Yakubu M., Patel, Rajnikant, Mujtaba, Iqbal M. 15 May 2018 (has links)
Yes / The FCC riser cracks gas oil into useful fuels such as gasoline, diesel and some lighter products such as ethylene and propylene, which are major building blocks for the polyethylene and polypropylene production. The production objective of the riser is usually the maximization of gasoline and diesel, but it can also be to maximize propylene. The optimization and parameter estimation of a six-lumped catalytic cracking reaction of gas oil in FCC is carried out to maximize the yield of propylene using an optimisation framework developed in gPROMS software 5.0 by optimizing mass flow rates and temperatures of catalyst and gas oil. The optimal values of 290.8 kg/s mass flow rate of catalyst and 53.4 kg/s mass flow rate of gas oil were obtained as propylene yield is maximized to give 8.95 wt%. When compared with the base case simulation value of 4.59 wt% propylene yield, the maximized propylene yield is increased by 95%.
83

Parameter Estimation : Towards Data-Driven and Privacy Preserving Approaches

Lakshminarayanan, Braghadeesh January 2024 (has links)
Parameter estimation is a pivotal task across various domains such as system identification, statistics, and machine learning. The literature presents numerous estimation procedures, many of which are backed by well-studied asymptotic properties. In the contemporary landscape, highly advanced digital twins (DTs) offer the capability to faithfully replicate real systems through proper tuning. Leveraging these DTs, data-driven estimators can alleviate challenges inherent in traditional methods, notably their computational cost and sensitivity to initializations. Furthermore, traditional estimators often rely on sensitive data, necessitating protective measures. In this thesis, we consider data-driven and privacy-preserving approaches to parameter estimation that overcome many of these challenges. The first part of the thesis delves into an exploration of modern data-driven estimation techniques, focusing on the two-stage (TS) approach. Operating under the paradigm of inverse supervised learning, the TS approach simulates numerous samples across parameter variations and employs supervised learning methods to predict parameter values. Divided into two stages, the approach involves compressing data into a smaller set of samples and the second stage utilizes these samples to predict parameter values. The simplicity of the TS estimator underscores its interpretability, necessitating theoretical justification, which forms the core motivation for this thesis. We establish statistical frameworks for the TS estimator, yielding its Bayes and minimax versions, alongside developing an improved minimax TS variant that excels in computational efficiency and robustness to distributional shifts. Finally, we conduct an asymptotic analysis of the TS estimator. The second part of the thesis introduces an application of data-driven estimation methods, that includes the TS and neural network based approaches, in the design of tuning rules for PI controllers. Leveraging synthetic datasets generated from DTs, we train machine learning algorithms to meta-learn tuning rules, streamlining the calibration process without manual intervention. In the final part of the thesis, we tackle scenarios where estimation procedures must handle sensitive data. Here, we introduce differential privacy constraints into the Bayes point estimation problem to protect sensitive information. Proposing a unified approach, we integrate the estimation problem and differential privacy constraints into a single convex optimization objective, thereby optimizing the accuracy-privacy trade-off. In cases where both observations and parameter spaces are finite, this approach reduces to a tractable linear program which is solvable using off-the-shelf solvers. In essence, this thesis endeavors to address computational and privacy concerns within the realm of parameter estimation. / Skattning av parametrar utgör en fundamental uppgift inom en mängd fält, såsom systemidentifiering, statistik och maskininlärning. I litteraturen finns otaliga skattningsmetoder, utav vilka många understödjs av välstuderade asymptotiska egenskaper. Inom dagens forskning erbjuder noggrant kalibrerade digital twins (DTs) möjligheten att naturtroget återskapa verkliga system. Genom att utnyttja dessa DTs kan data-drivna skattningsmetoder minska problem som vanligtvis drabbar traditionella skattningsmetoder, i synnerhet problem med beräkningsbörda och känslighet för initialiseringvillkor. Traditionella skattningsmetoder kräver dessutom ofta känslig data, vilket leder till ett behov av skyddsåtgärder. I den här uppsatsen, undersöker vi data-drivna och integritetsbevarande parameterskattningmetoder som övervinner många av de nämnda problemen.  Första delen av uppsatsen är en undersökning av moderna data-drivna skattningtekniker, med fokus på två-stegs-metoden (TS). Som metod inom omvänd övervakad maskininlärning, simulerar TS en stor mängd data med ett stort urval av parametrar och tillämpar sedan metoder från övervakad inlärning för att förutsäga parametervärden. De två stegen innefattar datakomprimering till en mindre mängd, varefter den mindre mängden data används för parameterskattning. Tack vare sin enkelhet och tydbarhet lämpar sig två-stegs-metoden väl för teoretisk analys, vilket är uppsatsens motivering. Vi utvecklar ett statistiskt ramverk för två-stegsmetoden, vilket ger Bayes och minimax-varianterna, samtidigt som vi vidareutvecklar minimax-TS genom en variant med hög beräkningseffektivitet och robusthet gentemot skiftade fördelningar. Slutligen analyserar vi två-stegs-metodens asymptotiska egenskaper.  Andra delen av uppsatsen introducerar en tillämpning av data-drivna skattningsmetoder, vilket innefattar TS och neurala nätverk, i designen och kalibreringen av PI-regulatorer. Med hjälp av syntetisk data från DTs tränar vi maskininlärningsalgoritmer att meta-lära sig regler för kalibrering, vilket effektiverar kalibreringsprocessen utan manuellt ingripande.  I sista delen av uppsatsen behandlar vi scenarion då skattningsprocessen innefattar känslig data. Vi introducerar differential-privacy-begränsningar i Bayes-punktskattningsproblemet för att skydda känslig information. Vi kombinerar skattningsproblemet och differential-privacy-begränsningarna i en gemensam konvex målfunktion, och optimerar således avvägningen mellan noggrannhet och integritet. Ifall både observations- och parameterrummen är ändliga, så reduceras problemet till ett lätthanterligt linjärt optimeringsproblem, vilket löses utan vidare med välkända metoder.  Sammanfattningsvis behandlar uppsatsen beräkningsmässiga och integritets-angelägenheter inom ramen för parameterskattning. / <p>QC 20240306</p>
84

Method for Evaluating Changing Blood Perfusion

Sheng, Baoyi 21 December 2023 (has links)
This thesis provides insight into methods for estimating blood perfusion, emphasizing the need for accurate modeling in dynamic physiological environments. The thesis critically examines conventional error function solutions used in steady state or gradually changing blood flow scenarios, revealing their shortcomings in accurately reflecting more rapid changes in blood perfusion. To address this limitation, this study introduces a novel prediction model based on the finite-difference method (FDM) specifically designed to produce accurate results under different blood flow perfusion conditions. A comparative analysis concludes that the FDM-based model is consistent with traditional error function methods under constant blood perfusion conditions, thus establishing its validity under dynamic and steady blood flow conditions. In addition, the study attempts to determine whether analytical solutions exist that are suitable for changing perfusion conditions. Three alternative analytical estimation methods were explored, each exposing the common thread of inadequate responsiveness to sudden changes in blood perfusion. Based on the advantages and disadvantages of the error function and FDM estimation, a combination of these two methods was developed. Utilizing the simplicity and efficiency of the error function, the prediction of contact resistance and core temperature along with the initial blood perfusion was first made at the beginning of the data. Then the subsequent blood perfusion values were predicted using the FDM, as the FDM can effectively respond to changing blood perfusion values. / Master of Science / Blood perfusion, the process of blood flowing through our body's tissues, is crucial for our health. It's like monitoring traffic flow on roads, which is especially important during rapid changes, such as during exercise or medical treatments. Traditional methods for estimating blood perfusion, akin to older traffic monitoring techniques, struggle to keep up with these rapid changes. This research introduces a new approach, using a method often found in engineering and physics, called the finite-difference method (FDM), to create more accurate models of blood flow in various conditions. This study puts this new method to the test against the old standards. We discover that while both are effective under steady conditions, the FDM shines when blood flow changes quickly. We also examined three other methods, but they, too, fell short in these fast-changing scenarios. This work is more than just numbers and models; it's about potentially transforming how we understand and manage health. By combining the simplicity of traditional methods for initial blood flow estimates with the dynamic capabilities of the FDM, we're paving the way for more precise medical diagnostics and treatments.
85

Parameter estimation and auto-calibration of the STREAM-C model

Sinha, Sumit 07 May 2005 (has links)
The STREAMC model is based on the same algorithm as implemented by the Steady Riverine Environmental Assessment Model (STREAM), a mathematical model for the dissolved oxygen (DO) distribution in freshwater streams used by Mississippi Department of Environmental Quality (MDEQ). Typically the water quality models are calibrated manually. In some cases where some objective criterion can be identified to quantify a successful calibration, an auto calibration may be preferable to the manual calibration approach. The auto calibration may be particularly applicable to relatively simple analytical models such as the steady-state STREAMC model. Various techniques of parameter estimation were identified for the model. The model was then subjected to various techniques of parameter estimation identified and/or developed. The parameter estimates obtained by different techniques were tabulated and compared. A final recommendation regarding a preferable parameter estimation technique leading to the auto calibration of the STREAMC model was made.
86

Poisson Approximation to Image Sensor Noise

Jin, Xiaodan January 2010 (has links)
No description available.
87

Fractional principal components regression: a general approach to biased estimators

Lee, Wonwoo January 1986 (has links)
Several biased estimators have been proposed as alternatives to the least squares estimator when multicollinearity is present in the multiple linear regression model. Though the ridge estimator and the principal components estimator have been widely used for such problems, it should be noted that their performances in terms of mean square error are dependent upon the orientation of the unknown parameter vector and the magnitude of σ². By defining the fractional principal components regression model as y̲ = Zα̲ + 𝛜̲ = ZF⁻α<sub>F</sub> + 𝛜̲ where α<sub>F</sub> = Fα̲ and F⁻ is a generalized inverse of a diagonal matrix P, the resulting estimators of α̲<sub>F</sub>, based on various forms of F, are shown to define the class of the fractional principal components estimators. In the fractional principal components framework, several new estimation techniques are developed. The performances of the new estimators are evaluated and compared with other commonly used biased estimators both theoretically and by simulation studies. / Ph. D. / incomplete_metadata
88

An improved algorithm for identification of time varying parameters using recursive digital techniques

Maloney, Bernard Christopher Patrick January 1986 (has links)
Identification is the process of determining values for the characteristic quantities, called parameters, of a system. Examples of such quantities are mass, inductance, resistance, spring coefficient, gain, et cetera. The decreasing cost of digital processors and the versatility of digital programming make digital methods an attractive means of accomplishing identification. It is important, however, that an identifier be able to track any change in a parameter if its output is to be used in any predictive capacity, such as in an adaptive controller. Most studies of digital identification have avoided the topic of time variations by using batch processing methods that implicitly assume constant parameters; this thesis does not. This thesis first investigates the parameter-tracking capabilities of a popular, real-time digital identification algorithm, the recursive weighted least squares method. This method is claimed to be able to track only slowly time-varying parameters. Based on the results of this study, a method of improving the accuracy of estimates of time-varying parameters is developed. This method, called conditioning, is a post-processor to the recursive weighted least squares algorithm. The results of tests of this method using three different plant simulations are presented, demonstrating the improved accuracy achieved by conditioning estimates of time-varying parameters. / M.S.
89

Intersection of B-spline surfaces by elimination method

Wong, Chee Kiang 03 March 2009 (has links)
Parametric surface representations such as the B-spline and Bezier geometries are widely used among the aerospace, automobile, and shipbuilding industries. These surfaces have proven to be very advantageous for defining and combining primitive geometries to form complex models. However, the task of finding the intersection curve between two surfaces has remained a difficult one. Presently, most of the research done in this area has resulted in various subdivision techniques. These subdivision techniques are based on approximations of the surface using planar polygons. This thesis presents an analytical approach to the intersection problem. The approach taken is to approximate the B-spline surface using subsets such as the ruled surface. Once the B-spline surface has been simplified, elimination techniques which solve for the surface variables can be used to analytically determine the intersection curve between two B-spline surfaces. / Master of Science
90

A non-clinical method to simultaneously estimate thermal conductivity, volumetric specific heat, and perfusion of in-vivo tissue

Madden, Marie Catherine 02 September 2004 (has links)
Many medical therapies, such as thermal tumor detection and hypothermia cancer treatments, utilize heat transfer mechanisms of the body. The focus of this work is the development and experimental validation of a method to simultaneously estimate thermal conductivity, volumetric specific heat, and perfusion of in-vivo tissue. The heat transfer through the tissue was modeled using a modified Pennes' equation. Using a least-squares parameter estimation method with regularization, the thermal properties could be estimated from the temperature response to the known applied heat flux. The method was tested experimentally using a new agar-water tissue phantom designed for this purpose. A total of 40 tests were performed. The results of the experiments show that conductivity can be successfully estimated for perfused tissue phantoms. The values returned for volumetric specific heat are lower than expected, while the estimated values of perfusion are far greater than expected. It is believed that the mathematical model is incorrectly accounting between these two terms. Both terms were treated as heat sinks, so it is conceivable that it is not discriminating between them correctly. Although the method can estimate all three parameters simultaneously, but it seems that the mathematical model is not accurately describing the system. In the future, improvements to the model could be made to allow the method to function accurately. / Master of Science

Page generated in 0.1358 seconds