• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wavelength Conversion in Domain-disordered Quasi-phase Matching Superlattice Waveguides

Wagner, Sean 31 August 2011 (has links)
This thesis examines second-order optical nonlinear wave mixing processes in domain-disordered quasi-phase matching waveguides and evaluates their potential use in compact, monolithically integrated wavelength conversion devices. The devices are based on a GaAs/AlGaAs superlattice-core waveguide structure with an improved design over previous generations. Quantum-well intermixing by ion-implantation is used to create the quasi-phase matching gratings in which the nonlinear susceptibility is periodically suppressed. Photoluminescence experiments showed a large band gap energy blue shift around 70 nm after intermixing. Measured two-photon absorption coefficients showed a significant polarization dependence and suppression of up to 80% after intermixing. Similar polarization dependencies and suppression were observed in three-photon absorption and nonlinear refraction. Advanced modeling of second-harmonic generation showed reductions of over 50% in efficiency due to linear losses alone. Self-phase modulation was found to be the dominant parasitic nonlinear effect on the conversion efficiency, with reductions of over 60%. Simulations of group velocity mismatch showed modest reductions in efficiency of less than 10%. Experiments on second-harmonic generation showed improvements in efficiency over previous generations due to low linear loss and improved intermixing. The improvements permitted demonstration of continuous wave second-harmonic generation for the first time in such structures with output power exceeding 1 µW. Also, Type-II phase matching was demonstrated for the first time. Saturation was observed as the power was increased, which, as predicted, was the result of self-phase modulation when using 2 ps pulses. By using 20 ps pulses instead, saturation effects were avoided. Thermo-optically induced bistability was observed in continuous wave experiments. Difference frequency generation was demonstrated with wavelengths from the optical C-band being converted to the L- and U-bands with continuous waves. Conversion for Type-I phase matching was demonstrated over 20 nm with signal and idler wavelengths being separated by over 100 nm. Type-II phase matched conversion was also observed. Using the experimental data for analysis, self-pumped conversion devices were found to require external amplification to reach practical output powers. Threshold pump powers for optical parametric oscillators were calculated to be impractically large. Proposed improvements to the device design are predicted to allow more practical operation of integrated conversion devices based on quasi-phase matching superlattice waveguides.
2

Wavelength Conversion in Domain-disordered Quasi-phase Matching Superlattice Waveguides

Wagner, Sean 31 August 2011 (has links)
This thesis examines second-order optical nonlinear wave mixing processes in domain-disordered quasi-phase matching waveguides and evaluates their potential use in compact, monolithically integrated wavelength conversion devices. The devices are based on a GaAs/AlGaAs superlattice-core waveguide structure with an improved design over previous generations. Quantum-well intermixing by ion-implantation is used to create the quasi-phase matching gratings in which the nonlinear susceptibility is periodically suppressed. Photoluminescence experiments showed a large band gap energy blue shift around 70 nm after intermixing. Measured two-photon absorption coefficients showed a significant polarization dependence and suppression of up to 80% after intermixing. Similar polarization dependencies and suppression were observed in three-photon absorption and nonlinear refraction. Advanced modeling of second-harmonic generation showed reductions of over 50% in efficiency due to linear losses alone. Self-phase modulation was found to be the dominant parasitic nonlinear effect on the conversion efficiency, with reductions of over 60%. Simulations of group velocity mismatch showed modest reductions in efficiency of less than 10%. Experiments on second-harmonic generation showed improvements in efficiency over previous generations due to low linear loss and improved intermixing. The improvements permitted demonstration of continuous wave second-harmonic generation for the first time in such structures with output power exceeding 1 µW. Also, Type-II phase matching was demonstrated for the first time. Saturation was observed as the power was increased, which, as predicted, was the result of self-phase modulation when using 2 ps pulses. By using 20 ps pulses instead, saturation effects were avoided. Thermo-optically induced bistability was observed in continuous wave experiments. Difference frequency generation was demonstrated with wavelengths from the optical C-band being converted to the L- and U-bands with continuous waves. Conversion for Type-I phase matching was demonstrated over 20 nm with signal and idler wavelengths being separated by over 100 nm. Type-II phase matched conversion was also observed. Using the experimental data for analysis, self-pumped conversion devices were found to require external amplification to reach practical output powers. Threshold pump powers for optical parametric oscillators were calculated to be impractically large. Proposed improvements to the device design are predicted to allow more practical operation of integrated conversion devices based on quasi-phase matching superlattice waveguides.
3

Estudo do momento angular orbital da luz na conversão paramétrica descendente e em informação quântica / Study of the orbital angular momentum of light in parametric conversion descendant and in quantum information

Andrade, José Henrique Araújo Lopes de 30 June 2010 (has links)
We present the theory of orbital angular momentum of light (MAO), based on the basic concepts of electromagnetism, as well as some techniques from generation and characterization of light beams possessing MAO. We also present non-linear optical processes of parametric conversion spontaneous descendant (CPD) and stimulated (CPDE). We reviewed the problem of conservation of MAO in CPD in the scheme does not collinear, describing States of using Laguerre-Gauss beams MAO. We extend this study to the case in which Bessel beams are used to describe the States of MAO. Our results show that rape occurs on conservation law of MAO, which is attributed to deformation of the angular spectrum of beam pumping (pump) transferred to the twin photons. However, this violation can be advantageous because through breach of MAO have access to entangled States of dimension greater than those generated with collinear geometry. As an alternative to the note of the violation of the law of conservation in parametric down conversion process we proposed an experiment based on CPDE, where the experimental implementation is simpler. Using MAO as target and polarization qubit as qubit control, we experimentally a alternative to optical circuit proposal for Li-Ping et al. [16] for the implementation of the logic gate C-NOT. Also we present an application of logic gate C-NOT for the generation of entangled States of a single photon, which can be implemented with our optical circuit. The generation of entangled States, multidimensional, and the implementation quantum logic gates are important for the areas of information and quantum computation. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Apresentamos a teoria do momento angular orbital da luz (MAO), baseada nos conceitos básicos do eletromagnetismo, bem como algumas técnicas de geração e caracterização de feixes de luz possuindo MAO. Apresentamos também os processos ópticos não lineares de conversão paramétrica descendente espontânea (CPD) e estimulada (CPDE). Revisamos o problema da conservação do MAO na CPD no regime não colinear, descrevendo os estados de MAO utilizando feixes Laguerre-Gauss. Extendemos este estudo para o caso em que feixes Bessel são usados para descrever os estados de MAO. Nossos resultados mostram que ocorre violação na lei de conservação do MAO, que é atribuída a deformação do espectro angular do feixe de bombeamento (pump) transferido para os fótons gêmeos. Entretanto, esta violação pode ser vantajosa, pois através da violação do MAO conseguimos ter acesso a estados emaranhados de dimensão maior do que aqueles gerados com geometria colinear. Como alternativa para a observação da violação da lei de conservação no processo de conversão paramétrica descendente, propusemos um experimento baseado na CPDE, onde a realização experimental é mais simples. Utilizando o MAO como qubit alvo e a polarização como qubit controle, realizamos experimentalmente um circuito ótico alternativo à proposta de Li-Ping e colaboradores [16] para a implementação da porta lógica C-NOT. Também apresentamos uma aplicação da porta lógica C-NOT para a geração de estados emaranhados de um único fóton, que pode ser implementada com nosso circuito ótico. A geração de estados emaranhados multidimensionais e a implementaçãode portas lógicas quânticas são importantes para as áreas de informação e computação quântica.
4

The Josephson mixer : a swiss army knife for microwave quantum optics / Le mélangeur Josephson : un couteau suisse pour l'optique quantique micro-onde

Flurin, Emmanuel 10 December 2014 (has links)
Cette thèse explore les caractéristiques uniques offertes par le mélangeur Josephson dans le domaine émergeant de l’optique quantique micro-onde. Nous avons démontré que le mixeur Josephson pouvait jouer trois rôles majeurs pour le traitement de l’information quantique. Nous avons conçu et fabriqué un amplificateur à la limite quantique avec la meilleure efficacité quantique démontrée à cette date. Cet outil crucial peut être utilisé pour la mesure microonde de systèmes mésoscopiques dont les circuits supraconducteurs. En particulier, cela nous a permis de réaliser avec succès la stabilisation de trajectoires d’un bit quantique supraconducteur par rétroaction basée sur la mesure. Ensuite, nous avons montré comment ce circuit peut générer et distribuer des radiations micro-ondes intriquées par conversion paramétrique spontanée sur des lignes de transmissions séparées dans l’espace et à des fréquences différentes. En utilisant deux mixeurs Josephson, nous avons fourni la première démonstration d’intrication non- locale entre deux champs propageants dans le domaine micro-onde, les états dits EPR. Finalement, nous avons utilisé le mixeur Josephson dans le mode de conversion de fréquence. Il se comporte alors comme un interrupteur, permettant d’ouvrir ou fermer dynamiquement l’accès à une cavité de haut facteur de qualité. L’ensemble constitue une mémoire quantique. En combinant cela avec la génération d’intrication, nous avons mesuré la distribution, le stockage et la libération sur demande d’un état intriqué. Ceci est un pré-requis pour jouer le rôle de nœud au sein d’un réseau quantique. / This thesis work explores unique features offered by the Josephson mixer in the upcoming field of microwave quantum optics. We have demonstrated three major roles the Josephson mixer could play in emerging quantum information architectures. First, we have designed and fabricated a state-of-the-art practical quantum limited amplifier with the best quantum efficiency achieved to date. This tool is crucial for probing mesoscopic systems with microwaves, and in particular superconducting circuits. Hence, it has enabled us to realize successfully the stabilization of quantum trajectories of a superconducting qubit by measurement-based feedback. Second, we have shown how this circuit can generate and distribute entangled microwave radiations on separated transmission lines at different frequencies. Using two Josephson mixers, we have provided the first demonstration of entanglement between spatially separated propagating fields in the microwave domain, the so-called Einstein-Podolsky-Rosen states. Finally, we have used the Josephson mixer as a frequency converter. Acting as a switch, it is able to dynamically turn on and off the coupling to a low loss cavity. This feature allowed us to realize a quantum memory for microwaves. In combination with the ability to generate entanglement, we have measured the time-controlled generation, storage and on-demand release of an entangled state, which is a prerequisite for nodes of a quantum network.

Page generated in 0.1197 seconds