• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application Of Geophysical And Geochronological Methods To Sedimentologic And Stratigraphic Problems In The Lower Cambrian Monkton Formation: Northwestern Vermont

Maguire, Henry C 01 January 2018 (has links)
The Monkton Formation of the western shelf stratigraphic sequence in Vermont (VT) is identified as a Lower Cambrian regressive sandstone unit containing parasequences recording tidal flat progradation. Previous workers identified cycles believed to represent parasequences in a portion of a 1034' deep geothermal well drilled at Champlain College in Burlington, Vermont. For this study, both outcrop and well geophysical surveys were completed to better identify gamma emission curves and relative values for parasequences and select lithologies that are indicators of bathymetry and sea level. After using physical stratigraphic techniques to assemble a composite stratigraphic section for the Monkton Formation, analysis of the gamma emission curve and relative gamma values resulted in the identification and characterization of parasequences and select lithologies within the Monkton. Interpretation of bathymetry-sensitive lithologies along with parasequence architecture and thickness trends reveals three distinctive intervals over the thickness of the Monkton. It is recognized that the succession of these intervals represents an overall decreasing rate in accommodation space generation through Monkton deposition. Previous workers have suggested that biostratigraphic relationships of the Monkton Formation to the Potsdam Group in New York (NY) suggest that that they would be at least partially correlative. To further refine age relationships and constrain and compare the provenance of the Vermont stratigraphy locally and regionally, zircon samples were collected from the Monkton and the overlying Danby Formations and radiometric age determinations were completed by laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS) at University of Arizona Laserchron Center. Zircon age probability distribution curves show two dominate age peaks between 1.05-1.09 Ga and 1.15-1.18 Ga for the Monkton and Danby suggesting either a continuity of provenance through the Cambrian or the cycling of the Monkton's sand. The 1.05-1.09 Ga age range corresponds to rocks generated during the Ottawan Orogeny while the 1.15-1.18 Ga range is associated with the Shawinigan Orogeny and anorthosite-mangerite-charnockite-granite (AMCG) plutonism. Dominant age peaks in the Vermont samples between 1.15-1.18 Ga are similar to the 1.16 Ga age peak reported by other workers from the Altona and Ausable Formations of the Potsdam Group of New York. The shared dominant age peak and close proximity of the Vermont and New York stratigraphy may suggest a primarily shared provenance.
2

Porosity development in Pennsylvanian core from Table Mesa and Rattlesnake Fields, northwestern New Mexico

Culpepper, Jonathan David 02 May 2009 (has links)
Table Mesa and Rattlesnake Fields are located on the Four Corners Platform, New Mexico, between the Paradox Basin to the north and San Juan Basin to the south. Diagenesis is extensive and includes partial dissolution and replacement of ooids, partial silicification of allochems and matrix, and filling of pore space with large, blocky calcite. Pore types include interparticle, intraparticle, and vuggy, with much porosity lost to late cementation. Porosity is greatest in cycles interpreted as regressive deposits with meteoric and burial diagenesis being most significant to porosity enhancement. Sea level and depositional history are shown to be significantly useful in predicting patterns of porosity development and destruction. These results are directly applicable to other economically important carbonate platforms.
3

An Application of Sequence Stratigraphy in Modelling Oil Yield Distribution: The Stuart Oil Shale Deposit, Queensland, Australia

Pope, Graham John January 2005 (has links)
The Stuart Oil Shale Deposit is a major oil shale resource located near Gladstone on the central Queensland coast. It contains an estimated 3.0 billion barrels of oil in place in 5.6 billion tonnes of shale. Commissioning of a plant capable of producing 4,500 barrels per day has recently commenced. The shale is preserved in Tertiary age sediments of The Narrows Beds in the southern part of The Narrows Graben. The oil shale sequence consists of repetitive cycles composed of oil shale, claystone and lesser carbonaceous oil shale in the 400 metre thick Rundle Formation. The formation is the main oil-shale bearing unit in the preserved half-graben sequence up to 1,000 metres thick. Previous studies on the lacustrine sedimentology of the Rundle Oil Shale Deposit in the northern part of The Narrows Graben have recognised eight facies that exhibit unique and recognisable cycles. The cycles and sequence for the Kerosene Creek Member of the Rundle Formation is correlatable between the Rundle and Stuart deposits. The nature of these facies and the cycles is reviewed in some detail. In conjunction with the principles of sequence stratigraphy, the ideal oil shale cycle is described as the equivalent of a parasequence within a lacustrine system. The lacustrine parasequence is bounded by lacustrine flooding surfaces. The organic material in the oil shale consists of both Type I (algal dominated) and Type III (higher plant matter dominated) kerogen. Where Type I kerogen dominate, oil yields greater than about 100 litres per tonne are common. In contrast where Type III kerogens are dominant, yields above 100 litres per tonne are rare. The variation in oil yield is described for the Stuart lacustrine system. The variation is consequent on the balance between production, preservation and degradation of the kerogen in the parasequences within systems tracts. A system for the recognition of oil shale deposition in terms of lacustrine systems tracts is established based on oil yield assay parameters and the assay oil specific gravity. The oil yield and oil specific gravity variation within the Rundle Formation is modelled by member and the nature and distribution of oil yield quality parameters in terms of the contribution of organic and inorganic source material are described. The presence of significant oil yield (greater than 50 litres per tonne) is dependent on the dominance of lacustrine transitional systems tracts and to a lesser extent, lacustrine highstand systems tracts within the parasequence sets deposited in a balanced lake system in a generally warm wet climate during the middle to late Tertiary.
4

Architektury, stratigrafie a sedimentární režim pískovcových těles svrchního turonu v sz. části české křídové pánve / Depositional architectures, stratigraphy, and depositional regime of Upper Turonian sandstone bodies, northwestern part of the Bohemian Cretaceous Basin

Vacková, Lenka January 2010 (has links)
This diploma thesis presents a synthesis of fieldwork and well-log data of the Upper- Turonian sandstone bodies in the northwestern part of the Bohemian Cretaceous Basin. There was no previous research based on method of the sequence stratigraphy and correlation well-logs. I made 13 measured sedimentological cross-sections that were correlated to stratigraphical cross section along depositional dip and strike. Structures of the Upper Turonian sandstones (genetic sequences TUR 5 - 7) are dominated by trough cross bedding that migrate on a slightly inclined delta slope (1 - 5ř). The main direction of paleocurrents is towards SE or E. The analysis of thicknesses of parasequences (for TUR 4 - TUR 7) gives trend of thinning parasequences through time. Increasing content of the potassium is evident within sequences TUR 4 to TUR 7. It is independent on the grain-size, but indicates rapid transport from the source area.
5

Sequence Stratigraphy of the Bridal Veil Falls Limestone, Carboniferous, Lower Oquirrh Group, on Cascade Mountain, Utah: A standard Morrowan Cyclostratigraphy for the Oquirrh Basin

Shoore, David Joseph 21 March 2005 (has links) (PDF)
The Bridal Veil Falls Limestone (lowest 400 meters of the Permo-Carboniferous Oquirrh Group) is well exposed on the flanks of Cascade Mountain (Wasatch Front and adjacent mountain ranges) near Provo, Utah. Because of its excellent exposure and location in the heart of the Oquirrh depocenter, this area was selected to develop a sequence stratigraphic framework for Morrowan rocks that may be applied throughout the Oquirrh basin (NW Utah and southern Idaho) as well as the adjacent Ely and Bird Springs troughs. Eleven partial to complete sections of the Bridal Veil Falls Limestone were measured along the west and north flanks of Cascade Mountain and the south end of Mt. Timpanogos. There the limestone is comprised principally of mud-rich carbonate lithofacies punctuated by thin, and sometimes discontinuous quartzose sandstone beds. The predominance of muddy to grain-rich heterozoan limestone microfacies suggests deposition on a west-dipping low energy carbonate ramp that prograded westward throughout Morrowan time. Sandstones reflect transport of siliciclastics from the incipient Weber shelf (located to the NE) during episodes of sea-level lowstand. The Bridal Veil Falls Limestone is subdivided into 21, third and fourth order depositional sequences ranging in thickness from 3 to 60 meters, and 62 parasequences. Parasequences are commonly asymmetrical, reflecting rapid flooding followed by protracted shoaling and/or sea level drop. Selected cycles are recognized in the Lake Mountains, Thorpe Hills, and the southern Oquirrh Mountains to the west of Cascade Mountain indicating that Parasequences delineated at Cascade Mountain are regionally extensive over an area of at least 300 square kilometers.

Page generated in 0.0449 seconds