• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The interaction of agricultural chemicals and environmental factors on the fate of parathion in soils

Ferris, Ian Glen. January 1979 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 155-167).
2

The use of Calliphora vicina larvae as toxicological specimens in pesticide related deaths

Seneviratne, Collin Abaya Senaka January 2000 (has links)
No description available.
3

The laboratory investigation of parathion poisoning cases /

Phannee Pidetcha, January 1979 (has links) (PDF)
Thesis (M.Sc. (Forensic Science))--Mahidol University, 1979.
4

Bioremediation of the organophosphate methyl parathion using genetically engineered and native organisms

Diaz Casas, Adriana Z. 01 November 2005 (has links)
Toxic waste disposal problems have become enormous due to the proliferation of xenobiotic compounds for use in agricultural, industrial and numerous other applications. Organophosphate (OP) pesticides are commonly used in agriculture and their toxicity is associated with inhibition of cholinesterase in the exposed organism. Some OPs have been shown to produce OP-induced delayed neuropathy (OPIDN). The overall goal of the work described in this thesis was to develop bacterial consortia to remediate hazardous substances at significantly higher rates than found with natural systems. Specifically, degradation of methyl parathion (MP) by hydrolysis with a genetically engineered Escherichia coli was investigated along with degradation of one of the resulting products, p-nitrophenol (PNP), by Sphingobium chlorophenolicum ATCC 53874. Simultaneous degradation of both MP and PNP was investigated using a consortium of a genetically engineered Escherichia coli and a native S. chlorophenolicum. Concentrations of MP and PNP were measured by high performance liquid chromatography (HPLC). Non-growing freely suspended recombinant OPH+ E. coli cells efficiently degraded MP without addition of nutrients for growth. Maximum reactor productivity was found with a biomass concentration of 25 g/L. Substrate inhibition did not occur up to 3 g MP/L. The simple Michaelis-Menten kinetic model for enzymatic reactions provided a good fit of the degradation data with Vm=11.45 ??mol/min??g-biomass and Km=2.73 g/L. B. cepacia failed to degrade PNP under the experimental conditions evaluated, so further studies were not conducted. Growing cultures of S. chlorophenolicum degraded PNP at concentrations up to 0.1 g/L without a lag phase in mineral salts glutamate medium. Parameters such as initial pH, growth medium and growth stage for addition of PNP were important degradation factors. The bacterium exhibited substantial growth in the degradation process. Hydroquinone (HQ) or nitrocatechol (NC) were not identified as products of PNP degradation. The recombinant OPH+ E. coli and S. chlorophenolicum consortium failed to degrade PNP when starting with higher concentrations of MP. The presence of organic solvent in the bacterial consortium degradation medium negatively affected the degradation of PNP. The genetically engineered organism efficiently degraded high concentrations of MP, but the resulting high concentration of intermediate product (PNP) inhibited growth of the native type organism. Biodegradation by consortia of genetically engineered non-growing and native-type organisms generally will be limited by the growing native-type organism.
5

PARAOXONASE AND PARAOXON DETOXIFICATION (PHARMACOKINETICS)

BUTLER, EDWARD GRANT. January 1984 (has links)
Thesis (Ph. D.)--University OF MICHIGAN. / eContent provider-neutral record in process. Description based on print version record.
6

PARAOXONASE AND PARAOXON DETOXIFICATION (PHARMACOKINETICS)

BUTLER, EDWARD GRANT. January 1984 (has links)
Thesis (Ph. D.)--University OF MICHIGAN. / Also issued in print.
7

The effect of the association of organic material with clays on parathion and DDT adsorption

Wang, Wun-cheng. January 1967 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1967. / Typescript. Vita. Description based on print version record. Includes bibliographical references (leaves 208-226).
8

Auswirkungen der Pflanzenschutzmittel-Belastung auf Lebensgemeinschaften in Fliessgewässern des landwirtschaftlich geprägten Raumes

Wogram, Jörn. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2001--Braunschweig.
9

Développement d'outils de surveillance biologique pour l'évaluation des risques pour la santé des humains exposés à quatre pesticides et au méthylmercure

Gosselin, Nathalie January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
10

Remoção de metil paration e atrazina em reatores de bancada com fungos / Removal of methyl parathion and atrazine in reactors with fungi

Sampaio, Glória Maria Marinho Silva 12 August 2005 (has links)
Neste estudo foi avaliada a remoção de metil paration - inseticida e atrazina - herbicida presentes em água, em reatores de bancada, com fungos. A pesquisa foi dividida em quatro etapas: operação em batelada com metil paration e micélio fúngico, com e sem glicose; teste de toxicidade em placas com Aspergillus niger AN400; operação em batelada com os pesticidas atrazina e metil paration e esporos de Aspergillus niger AN400, com e sem glicose; e operação em reatores de leito fixo e fluxo ascendente. Na primeira etapa, a remoção de metil paration foi de 97% nos reatores sem glicose e 94% nos reatores com glicose com 32 dias de reação. Na operação em batelada, com esporos, um modelo cinético de primeira ordem representou bem a velocidade de decaimento de metil paration nesta fase, principalmente, nos reatores que continham glicose. Para os experimentos sem adição de glicose, a constante cinética foi de 0,063 &#177 0,005/h, enquanto que para os experimentos com glicose a constante foi de 0,162 &#177 0,014/h. Dessa forma, a adição de glicose resultou efetivamente em aumento na velocidade de conversão do inseticida. Na fase experimental, com atrazina e esporos de Aspergillus niger AN400, a presença do substrato primário (glicose) não teve influência na remoção de atrazina, sendo que os percentuais de remoção foram muito próximos aos percentuais encontrados nos reatores sem glicose. O estudo cinético, nessa fase com atrazina e esporos, revelou que para os experimentos sem a adição de glicose, o valor da velocidade de conversão de atrazina (RATZo) foi de 0,023/d, enquanto que para os experimentos com glicose (RATZo) foi 0,022/d. Portanto, a adição de glicose parece não ter influenciado significativamente a velocidade de remoção do herbicida por Aspergillus niger AN400. O teste de toxicidade demonstrou que metil paration e atrazina não inibiram o crescimento do fungo nas várias concentrações testadas, inclusive nas mais elevadas, que foram 60 mg/L e 25 mg/L para metil paration e atrazina, respectivamente. No reator de leito fixo a remoção de metil paration foi de 40% com 12 h de tempo de detenção hidráulica, e 0,5 g glicose/L. Porém, quando a concentração de glicose foi duplicada a remoção de metil paration diminuiu para 35%. Neste reator o pH se manteve na faixa ácida 3,4 a 5,2, considerada ideal para os fungos. Os resultados encontrados mostram a viabilidade dos fungos para remoção desses pesticidas, considerados persistentes no ambiente. / In this study the removal of methyl parathion was evaluated - insecticide and atrazine - herbicide present in water, in reactors with fungi. The research was divided in four stages: operation in batch reactors with methil parathion and micelium fungus, with and without glucose; toxicity test in plates with Aspergillus niger AN400; operation in batch reactors with the pesticides atrazine and methyl parathion and spore of Aspergillus niger AN400, with and without glucose; and operation in reactors of fixed bed and ascending flow. In the first stage the removal of methyl parathion was 97% in reactors without glucose and 94% in reactors with glucose in 32 days of reaction time. In the operation in batch with spores, a kinetic model of first order represented very well the speed of decline of the methyl parathion in this step, in the reactors that contained glucose, mainly. For the experiments without the glucose addition, the kinetic constant was 0,063 &#177 0,005/h, and for the experiments with glucose the constant was of 0,162 &#177 0,014/h. In that way, the glucose addition resulted in increase in the speed of conversion of the insecticide. In the experimental step with atrazine and spores of Aspergillus niger AN400, the presence of the primary substratum (glucose) didn\'t have influence in the atrazine removal, and the percentile removal lays very close to the percentile found in the reactors without glucose. The kinetic study, in that step with atrazine and spores, revealed that for the experiments without the glucose addition, the value of the speed conversion of atrazine (RATZo) was 0,023/d, and for the experiments with glucose (RATZo) was 0,022/d. Therefore, the glucose addition seems not to have influenced significantly the speed of removal of the herbicide for Aspergillus niger AN400. The toxicity test demonstrated that methyl parathion and atrazine didn\'t inhibit the growth of fungi in the several concentrations, including in high concentrations, that were tested 60 mg/L and 25 mg/L to methyl parathion and atrazine, respectively. The reactor of fixed bed got removal of methyl parathion of 40% in 12 hours of detention hydraulic, in 0,5 g glicose/L. However, when the glucose concentration was doubled the removal of methyl parathion decreased to 35%. In this reactor the pH kept in the acid strip (3,4 - 5,2), considered ideal for the fungi, and conductivity values didn\'t favor the hydrolysis of the insecticide. The found results show the viability of the fungi for removal of those pesticides, considered recalcitrant to the environment.

Page generated in 0.0702 seconds