• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parcellisation du manteau cortical à partir du réseau de connectivité anatomique cartographié par imagerie de diffusion

Roca, Pauline 03 November 2011 (has links) (PDF)
La parcellisation du cerveau humain en aires fonctionnelles est un problème complexe mais majeur pour la compréhension du fonctionnement du cerveau et pourrait avoir des applications médicales importantes en neurochirurgie par exemple pour mieux identifier les zones fonctionnelles à sauvegarder. Cet objectif va de pair avec l'idée de construire le connectome cérébral humain, qui n'est autre que le réseau de ses connexions.Pour définir un tel réseau, il faut en effet définir les éléments de ce réseau de connexions : c'est-à-dire avoir un découpage du cerveau en régions. Il existe de multiples manières et critères pour identifier ces régions et à ce jour il n'y a pas de parcellisation universelle du cortex. Dans cette thèse nous étudierons la possibilité d'effectuer cette parcellisation en fonction des données de connectivité anatomique, issues de l'imagerie par résonance magnétique de diffusion, qui est une technique d'acquisition permettant de reconstruire les faisceaux de neurones cérébraux de manière non invasive. Nous nous placerons dans un cadre surfacique en étudiant seulement la surface corticale et les connexions anatomiques sous-jacentes. Dans ce contexte nous présenterons un ensemble de nouveaux outils pour construire, visualiser et simuler le connectome cérébral humain, dans un cadre surfacique et à partir des données de connectivité anatomique reconstruites par IRM, et ceci pour un groupe de sujets. A partir de ces outils nous présenterons des méthodes de réduction de dimension des données de connectivité, que nous appliquerons pour parcelliser le cortex entier de quelques sujets. Nous proposons aussi une nouvelle manière de décomposer les données de connectivité au niveau d'un groupe de sujets en tenant compte de la variabilité inter-individuelle. Cette méthode sera testée et comparée à d'autres méthodes sur des données simulées et des données réelles. Les enjeux de ce travail sont multiples, tant au niveau méthodologique (comparaison de différents algorithmes de tractographie par exemple) que clinique (étude du lien entre altérations des connexions et pathologie).
2

Régularisation du problème inverse MEG par IRM de diffusion / MEG inverse problem regularization via diffusion MRI

Philippe, Anne-Charlotte 19 December 2013 (has links)
La magnéto-encéphalographie (MEG) mesure l´activité cérébrale avec un excellent décours temporel mais sa localisation sur la surface corticale souffre d´une mauvaise résolution spatiale. Le problème inverse MEG est dit mal-posé et doit de ce fait être régularisé. La parcellisation du cortex en régions de spécificité fonctionnelle proche constitue une régularisation spatiale pertinente du problème inverse MEG. Nous proposons une méthode de parcellisation du cortex entier à partir de la connectivité anatomique cartographiée par imagerie de diffusion. Au sein de chaque aire d´une préparcellisation, la matrice de corrélation entre les profils de connectivité des sources est partitionnée. La parcellisation obtenue est alors mise à jour en testant la similarité des données de diffusion de part et d´autre des frontières de la préparcellisation. C´est à partir de ce résultat que nous contraignons spatialement le problème inverse MEG. Dans ce contexte, deux méthodes sont développées. La première consiste à partitionner l´espace des sources au regard de la parcellisation. L´activité corticale est alors obtenue sur un ensemble de parcelles. Afin de ne pas forcer les sources à avoir exactement la même intensité au sein d´une parcelle, nous développons une méthode alternative introduisant un nouveau terme de régularisation qui, lorsqu´il est minimisé, tend à ce que les sources d´une même parcelle aient des valeurs de reconstruction proches. Nos méthodes de reconstruction sont testées et validées sur des données simulées et réelles. Une application clinique dans le cadre du traitement de données de sujets épileptiques est également réalisée. / Magnetoencephalography (MEG) is a functional non-invasive modality which provides information on the temporal succession of cognitive processes with an excellent time resolution. Unfortunately, spatial resolution is limited due to the ill-posed nature of the MEG inverse problem for estimating source currents from the electromagnetic measurement. Cortex parcellation into regions sharing functional features constitutes a relevant spatial regularization. We propose a whole cortex parcellation method based on the anatomical connectivity mapped by diffusion MRI. Inside areas of a preparcellation, the correlation matrix between connectivity profiles is clustered. The cortex parcellation is then updated testing the similarity of diffusion data on both sides of pre-parcellation boundaries. MEG inverse problem is constrained from this result. Two methods have been developed. The first one is based on the subdivision of source space regarding the parcellation. The cortical activity is obtained on a set of parcels and its analysis is simplified. Not to force sources to have exactly the same value inside a cortical area, we develop an alternative method. We introduce a new regularization term in the MEG inverse problem which constrain sources in a same region to have close values. Our methods are applied on simulated and real subjects. Clinical application is also performed on epileptic data. Each contribution takes part of a pipeline whose each step is detailed to make our works reproducible.
3

Régularisation du problème inverse MEG par IRM de diffusion

Philippe, Anne-Charlotte 19 December 2013 (has links) (PDF)
La magnéto-encéphalographie (MEG) mesure l'activité cérébrale avec un excellent décours temporel mais sa localisation sur la surface corticale souffre d'une mauvaise résolution spatiale. Le problème inverse MEG est dit mal-posé et doit de ce fait être régularisé. La parcellisation du cortex en régions de spécificité fonctionnelle proche constitue une régularisation spatiale pertinente du problème inverse MEG. Nous proposons une méthode de parcellisation du cortex entier à partir de la connectivité anatomique cartographiée par imagerie de diffusion. Au sein de chaque aire d'une préparcellisation, la matrice de corrélation entre les profils de connectivité des sources est partitionnée. La parcellisation obtenue est alors mise à jour en testant la similarité des données de diffusion de part et d'autre des frontières de la préparcellisation. C'est à partir de ce résultat que nous contraignons spatialement le problème inverse MEG. Dans ce contexte, deux méthodes sont développées. La première consiste à partitionner l'espace des sources au regard de la parcellisation. L'activité corticale est alors obtenue sur un ensemble de parcelles. Afin de ne pas forcer les sources à avoir exactement la même intensité au sein d'une parcelle, nous développons une méthode alternative introduisant un nouveau terme de régularisation qui, lorsqu'il est minimisé, tend à ce que les sources d'une même parcelle aient des valeurs de reconstruction proches. Nos méthodes de reconstruction sont testées et validées sur des données simulées et réelles. Une application clinique dans le cadre du traitement de données de sujets épileptiques est également réalisée.
4

Parcellisation du manteau cortical à partir du réseau de connectivité anatomique cartographié par imagerie de diffusion / Connectivity-based parcellation of the human cortex

Roca, Pauline 03 November 2011 (has links)
La parcellisation du cerveau humain en aires fonctionnelles est un problème complexe mais majeur pour la compréhension du fonctionnement du cerveau et pourrait avoir des applications médicales importantes en neurochirurgie par exemple pour mieux identifier les zones fonctionnelles à sauvegarder. Cet objectif va de pair avec l’idée de construire le connectome cérébral humain, qui n’est autre que le réseau de ses connexions.Pour définir un tel réseau, il faut en effet définir les éléments de ce réseau de connexions : c’est-à-dire avoir un découpage du cerveau en régions. Il existe de multiples manières et critères pour identifier ces régions et à ce jour il n’y a pas de parcellisation universelle du cortex. Dans cette thèse nous étudierons la possibilité d’effectuer cette parcellisation en fonction des données de connectivité anatomique, issues de l’imagerie par résonance magnétique de diffusion, qui est une technique d’acquisition permettant de reconstruire les faisceaux de neurones cérébraux de manière non invasive. Nous nous placerons dans un cadre surfacique en étudiant seulement la surface corticale et les connexions anatomiques sous-jacentes. Dans ce contexte nous présenterons un ensemble de nouveaux outils pour construire, visualiser et simuler le connectome cérébral humain, dans un cadre surfacique et à partir des données de connectivité anatomique reconstruites par IRM, et ceci pour un groupe de sujets. A partir de ces outils nous présenterons des méthodes de réduction de dimension des données de connectivité, que nous appliquerons pour parcelliser le cortex entier de quelques sujets. Nous proposons aussi une nouvelle manière de décomposer les données de connectivité au niveau d’un groupe de sujets en tenant compte de la variabilité inter-individuelle. Cette méthode sera testée et comparée à d’autres méthodes sur des données simulées et des données réelles. Les enjeux de ce travail sont multiples, tant au niveau méthodologique (comparaison de différents algorithmes de tractographie par exemple) que clinique (étude du lien entre altérations des connexions et pathologie). / In-vivo parcellation of the human cortex into functional brain areas is a major goal to better understand how the brain works and could have a lot of medical applications and give useful information to guide neurosurgery for example. This objective is related to the buildong of the human brain connectome, which is the networks of brain connections.Indeed, it is necessary to define the basic element of this connectome, and for doing this to have a subdivision of the cortex into brain regions. Actually, there is no such gold standard parcellation : there are a lot of techniques and methods to achieve this goal. During this PhD., anatomical connectivité based on diffusion-weighted imaging hase been used to address this problem, with a surfacic approach. In this context, we will present a set of new tools to create, visualize and simulate the human brain connectome for a group of subjects. We will introduce dimension reduction methods to compile the cortical connectivity profiles taking into account the interindividual variability. These methods will be apply to parcellate the cortex, for one subject or for a group of subjects simultaneously.There are many applications of this work, in methodology, to compare tractography algorithms for example or in clinical, to look at the relations between connections damages and pathology.

Page generated in 0.1265 seconds