• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la plasticité épigénétique du gène Necdin/NECDIN impliqué dans le syndrome de Prader-Willi et de ses conséquences fonctionnelles sur le phenotype

Rieusset, Anne 16 September 2013 (has links)
Le syndrome de Prader-Willi est une maladie génétique rare. Les gènes candidats au SPW, dont le gène Necdin, sont régulés par l'empreinte génomique parentale : seul l'allèle paternel de ces gènes est exprimé, l'allèle maternel étant silencieux. Notre équipe a généré un modèle murin pour lequel l'allèle paternel de Necdin a été désactivé (+m/-p) et qui présente des similarités phénotypiques avec les patients PW. Ce phénotype est plus drastique chez les animaux -/-. Nous avons alors émis l'hypothèse que l'allèle maternel puisse avoir un rôle fonctionnel dans la survie des souris (+m/-p). L'expression de l'allèle maternel de Necdin est présente dans le système nerveux des souris (+m/-p). Cette expression, bien que faible au niveau transcriptionnel, est suffisante pour produire la protéine Necdin, ce qui a des conséquences cellulaires et physiologiques qui in fine permettent une amélioration du phénotype. Cette perte de silence de l'allèle maternel est également détectée dans l'hypothalamus de patients PW. Ces résultats révèlent une plasticité épigénétique inattendue qui permet d'envisager des perspectives thérapeutiques. / The Prader-Willi Syndrome (PWS) is a rare genetic disorder. Several genes, including NECDIN gene, are involved in the PWS. These genes are regulated by the genomic imprinting mechanism: only the paternal allele of these genes is expressed, their maternal allele being silenced. Our team has generated a mouse model in which the paternal allele of the Necdin gene has been deactivated (+m/-p). This model presents phenotypical similarities with PWS patients. We observed that mortality affects more -/- pups than +m/-p mice. Therefore we venture the hypothesis of a functional role of the maternal allele in mutant mice survival. We showed an expression of this allele in the nervous system of +m/-p mice. Though transcriptionnally low, that is sufficient to produce the Necdin protein and provoke cellular as well as physiological consequences that actively improve the phenotype. Importantly, a specific expression of the maternal NECDIN allele is also detected in hypothalamic brain sections of PWS patients. These results reveal an unexpected epigenetic flexibility that allow to contemplate a therapeutic pharmacological prospect.
2

Identification d’un réseau de gènes soumis à empreinte génomique parentale et son rôle dans le contrôle des transitions entre prolifération, quiescence et différenciation. / Identification of an imprinted gene network and its role in controlling transitions between proliferation, quiescence and differentiation.

Al Adhami, Hala 29 November 2012 (has links)
L'empreinte génomique parentale est un mécanisme de régulation épigénétique conduisant à la répression d'un allèle d'un gène en fonction de son origine parentale. Ce mécanisme affecte un nombre restreint de gènes chez les mammifères métathériens et euthériens. Ces gènes, dits gènes soumis à empreinte (GSE), ont des fonctions moléculaires variées et sans lien apparent. Cependant, deux thèmes reviennent de manière récurrente dans leurs fonctions: le contrôle de la croissance embryonnaire et la tumorigenèse. Ma thèse a consisté à démontrer l'existence d'un lien fonctionnel entre les GSE. Nous montrons que les GSE s'inscrivent dans un même réseau de co-expression transcriptionnelle et qu'ils sont co-régulés dans différentes situations biologiques lors des transitions entre les différents états cellulaires. En effet, une induction coordonnée de la plupart des GSE a lieu lors des sorties du cycle cellulaire, réversibles (quiescence) ou non (différenciation). Les perturbations individuelles de l'expression de plusieurs GSE dans le modèle des pré-adipocytes 3T3-L1 confirment un rôle du réseau des GSE dans le contrôle des transitions entre prolifération, quiescence et différenciation. De plus, l'analyse des gènes bi-alléliques inclus dans le même réseau de co-régulation que les GSE montre un enrichissement en gènes de la matrice extracellulaire. La fonction associée à ce réseau serait donc le contrôle des transitions entre les différents états cellulaires, via le remodelage de la matrice extracellulaire. Pour conclure, outre l'identification d'une fonction commune aux GSE, nos résultats suggèrent un scénario pour le ciblage de ces gènes par l'empreinte génomique parentale au cours de l'évolution des mammifères. / Genomic imprinting is an epigenetic mechanism leading to the repression of one allele of a gene, depending on its parental origin. This mechanism affects a small number of genes in metatherian and eutherian mammals. These genes, named imprinted genes (IGs), display various molecular functions and thus seem unrelated. However, their alterations are frequently associated with the control of embryonic growth and tumorigenesis. My PhD project has consisted in demonstrating a functional link between IGs. We show that IGs are frequently co-expressed and belong to a common gene network. They are co-regulated in biological situations corresponding to the transitions between different cellular states. Coordinated induction of most IGs takes place at the outputs of the cell cycle. Loss and gain of function experiments of several IGs in the 3T3-L1 pre-adipocyte model demonstrate a role of the IG network in controlling transitions between cellular states (proliferation, quiescence and differentiation). In addition to IGs, this network also includes bi-allelic genes, with many extracellular matrix genes. Therefore, the function associated with the IG network could be the fine control of transitions between cellular states through a remodeling of the extracellular matrix.To conclude, in addition to the identification of a common cellular function for IGs, our results suggest a possible scenario for the targeting of these genes by parental genomic imprinting during mammalian evolution.

Page generated in 0.1213 seconds