• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification et caractérisation de la fonction d’un réseau de gènes soumis à empreinte / Functional characterisation of a mouse Imprinted Gene Network

Evano, Brendan 18 June 2012 (has links)
Chez les mammifères, l'empreinte génomique parentale est un mécanisme épigénétique restreignant l'expression d'une centaine de gènes à un seul allèle, déterminé selon son origine parentale. Les gènes affectés et les mécanismes sous-jacents à leur expression mono-allélique sont essentiellement déterminés par une marque épigénétique différentielle portés par les allèles maternel et paternel. D'un point de vue fonctionnel et au niveau physiologique, l'empreinte est actuellement comprise comme un mécanisme contrôlant la quantité de ressources attribuées par la mère à sa progéniture. Les gènes soumis à empreinte s'inscrivent dans un même réseau transcriptionnel (IGN), et plusieurs études indiquent qu'ils contrôleraient l'équilibre entre prolifération et quiescence de cellules souches adultes. A travers cette étude, nous montrons une induction coordonnée de la plupart des gènes soumis à empreinte lors de la sortie du cycle cellulaire, que celle-ci soit réversible (quiescence) ou non (différenciation). De plus, dans un modèle de pré-adipocytes 3T3-L1, la perturbation de la dynamique d'expression de plusieurs de ces gènes semble conforter l'hypothèse d'un contrôle des transitions entre différents états cellulaires (prolifération, quiescence et différenciation) par l'IGN. Outre l'identification d'une fonction cellulaire commune aux gènes soumis à empreinte, nos résultats ouvrent la voie d'une meilleure compréhension des mécanismes de régulation de la quiescence. De plus, nos conclusions permettent de suggérer un nouveau scénario pour la sélection de l'empreinte parentale au cours de l'évolution des mammifères. / Mammalian genomic imprinting is an epigenetic mechanism that restrains the expression of about a hundred genes to a single allele, in a parent-of-origin specific manner. The identity of imprinted genes and the molecular basis of their monoallelic expression mostly rely on a differential epigenetic marking of the parental alleles. Presently, imprinting is understood as a mechanism aimed at controlling the amount of maternal resources allocated to the offspring. Imprinted genes belong to the same transcriptional network (IGN) and, according to different reports, they seem to control the balance between proliferation and quiescence of adult stem cells. In this study, we show that most imprinted genes are induced upon cell cycle exit, whether reversible (quiescence) or not (differentiation). In addition, within the 3T3-L1 preadipocytes cell line, impairing the dynamics of expression of several imprinted genes impairs the transitions between different cellular states, namely proliferation, quiescence and differentiation. Our results highlight the existence of a common cellular function of imprinted genes, and provide a new frame to understand cellular quiescence, at a molecular level. Furthermore, they suggest a new plausible scenario for the implementation of genomic imprinting during mammalian evolution.
2

Méthodes pour l’identification des modèles de réseaux biochimiques / Methods for identification of biochemical network models

Berthoumieux, Sara 13 June 2012 (has links)
Les bactéries ajustent constamment leur composition moléculaire pour répondre à deschangements environnementaux. Nous nous intéressons aux systèmes de régulation métabolique et génique permettant une telle adaptation, notamment dans le contexte de la diauxie chez Escherichia coli lors de la transition de croissance sur une source de carbone riche, le glucose, à une source plus pauvre, l’acétate. Afin de modéliser de tels réseaux métaboliques, nous utilisons un formalisme cinétique approché appelé linlog et abordons les problèmes ren- contrés lors de l’estimation de paramètres. Ainsi, nous proposons une méthode d’estimationde paramètres à partir de jeux de données incomplets basée sur l’algorithme EM (“Expec- tation Maximization”) et l’appliquons au modèle linlog du métabolisme central du carbone. Nous proposons également une méthode d’analyse d’identifiabilité et de réduction de modèles non identifiables que nous appliquons ensuite sur des jeux de données simulés ou obtenus expérimentalement. Par ailleurs, nous mesurons des profils temporels d’expression de gènes impliqués dans le contrôle de la diauxie et mettons en évidence, à l’aide de modèles cinétiques développés dans ces travaux, l’importance de la contribution de l’état physiologique de la cellule dans la régulation génique. En se confrontant aux défis méthodologiques rencontrés lors du développement de modèles de réseaux métabolique et génique, cette thèse contribue aux efforts futurs portant sur l’intégration de ces deux types de réseaux dans des modèles quantitatifs. / Bacteria manage to constantly adapt their molecular composition to respond to environmentalchanges. We focus on systems of both metabolic and gene regulation that enablesuch type of adaptation, notably in the context of diauxic growth of Escherichia coli, when itshifts from glucose to acetate as a carbon source. To model a metabolic network, we use anapproximate kinetic formalism called linlog and address methodological issues encounteredwhen performing parameter estimation. We propose a maximum-likelihood method basedon Expectation Maximization for parameter estimation from incomplete datasets. We then apply it to the linlog model of central carbon metabolism. We also propose a method foridentifiability analysis and reduction of nonidentifiable models that we then apply to bothsimulated and experimental datasets. Moreover, we monitored gene expression patterns for agene network involved in the control of diauxie and highlight, by means of kinetic models developedin this study, the role of the global physiological state of the cell in regulation of geneexpression. By addressing methodological challenges encountered with models of metabolicand gene networks, this thesis contributes to future efforts integrating both types of networksinto quantitative models
3

Identification d’un réseau de gènes soumis à empreinte génomique parentale et son rôle dans le contrôle des transitions entre prolifération, quiescence et différenciation. / Identification of an imprinted gene network and its role in controlling transitions between proliferation, quiescence and differentiation.

Al Adhami, Hala 29 November 2012 (has links)
L'empreinte génomique parentale est un mécanisme de régulation épigénétique conduisant à la répression d'un allèle d'un gène en fonction de son origine parentale. Ce mécanisme affecte un nombre restreint de gènes chez les mammifères métathériens et euthériens. Ces gènes, dits gènes soumis à empreinte (GSE), ont des fonctions moléculaires variées et sans lien apparent. Cependant, deux thèmes reviennent de manière récurrente dans leurs fonctions: le contrôle de la croissance embryonnaire et la tumorigenèse. Ma thèse a consisté à démontrer l'existence d'un lien fonctionnel entre les GSE. Nous montrons que les GSE s'inscrivent dans un même réseau de co-expression transcriptionnelle et qu'ils sont co-régulés dans différentes situations biologiques lors des transitions entre les différents états cellulaires. En effet, une induction coordonnée de la plupart des GSE a lieu lors des sorties du cycle cellulaire, réversibles (quiescence) ou non (différenciation). Les perturbations individuelles de l'expression de plusieurs GSE dans le modèle des pré-adipocytes 3T3-L1 confirment un rôle du réseau des GSE dans le contrôle des transitions entre prolifération, quiescence et différenciation. De plus, l'analyse des gènes bi-alléliques inclus dans le même réseau de co-régulation que les GSE montre un enrichissement en gènes de la matrice extracellulaire. La fonction associée à ce réseau serait donc le contrôle des transitions entre les différents états cellulaires, via le remodelage de la matrice extracellulaire. Pour conclure, outre l'identification d'une fonction commune aux GSE, nos résultats suggèrent un scénario pour le ciblage de ces gènes par l'empreinte génomique parentale au cours de l'évolution des mammifères. / Genomic imprinting is an epigenetic mechanism leading to the repression of one allele of a gene, depending on its parental origin. This mechanism affects a small number of genes in metatherian and eutherian mammals. These genes, named imprinted genes (IGs), display various molecular functions and thus seem unrelated. However, their alterations are frequently associated with the control of embryonic growth and tumorigenesis. My PhD project has consisted in demonstrating a functional link between IGs. We show that IGs are frequently co-expressed and belong to a common gene network. They are co-regulated in biological situations corresponding to the transitions between different cellular states. Coordinated induction of most IGs takes place at the outputs of the cell cycle. Loss and gain of function experiments of several IGs in the 3T3-L1 pre-adipocyte model demonstrate a role of the IG network in controlling transitions between cellular states (proliferation, quiescence and differentiation). In addition to IGs, this network also includes bi-allelic genes, with many extracellular matrix genes. Therefore, the function associated with the IG network could be the fine control of transitions between cellular states through a remodeling of the extracellular matrix.To conclude, in addition to the identification of a common cellular function for IGs, our results suggest a possible scenario for the targeting of these genes by parental genomic imprinting during mammalian evolution.
4

Méthodes pour l'identification des modèles de réseaux biochimiques

Berthoumieux, Sara 13 June 2012 (has links) (PDF)
Les bactéries ajustent constamment leur composition moléculaire pour répondre à deschangements environnementaux. Nous nous intéressons aux systèmes de régulation métabolique et génique permettant une telle adaptation, notamment dans le contexte de la diauxie chez Escherichia coli lors de la transition de croissance sur une source de carbone riche, le glucose, à une source plus pauvre, l'acétate. Afin de modéliser de tels réseaux métaboliques, nous utilisons un formalisme cinétique approché appelé linlog et abordons les problèmes ren- contrés lors de l'estimation de paramètres. Ainsi, nous proposons une méthode d'estimationde paramètres à partir de jeux de données incomplets basée sur l'algorithme EM ("Expec- tation Maximization") et l'appliquons au modèle linlog du métabolisme central du carbone. Nous proposons également une méthode d'analyse d'identifiabilité et de réduction de modèles non identifiables que nous appliquons ensuite sur des jeux de données simulés ou obtenus expérimentalement. Par ailleurs, nous mesurons des profils temporels d'expression de gènes impliqués dans le contrôle de la diauxie et mettons en évidence, à l'aide de modèles cinétiques développés dans ces travaux, l'importance de la contribution de l'état physiologique de la cellule dans la régulation génique. En se confrontant aux défis méthodologiques rencontrés lors du développement de modèles de réseaux métabolique et génique, cette thèse contribue aux efforts futurs portant sur l'intégration de ces deux types de réseaux dans des modèles quantitatifs.

Page generated in 0.1578 seconds