Spelling suggestions: "subject:"parkinsonkrankheit"" "subject:"caissonkrankheit""
1 |
Application of Ion Beam Methods in Biomedical ResearchBarapatre, Nirav 28 October 2013 (has links) (PDF)
The methods of analysis with a focused ion beam, commonly termed as nuclear microscopy, include quantitative physical processes like PIXE and RBS. The element concentrations in a sample can be quantitatively mapped with a sub-micron spatial resolution and a sub-ppm sensitivity. Its fully quantitative and non-destructive nature makes it particularly suitable for analysing biological samples. The applications in biomedical research are manifold.
The iron overload hypothesis in Parkinson\\\'s disease is investigated by a differential analysis of human substantia nigra. The trace element content is quantified in neuromelanin, in microglia cells, and in extraneuronal environment. A comparison of six Parkinsonian cases with six control cases revealed no significant elevation in iron level bound to neuromelanin. In fact, a decrease in the Fe/S ratio of Parkinsonian neuromelanin was measured, suggesting a modification in its iron binding properties.
Drosophila melanogaster, or the fruit fly, is a widely used model organism in neurobiological experiments. The electrolyte elements are quantified in various organs associated with the olfactory signalling, namely the brain, the antenna and its sensilla hairs, the mouth parts, and the compound eye. The determination of spatially resolved element concentrations is useful in preparing the organ specific Ringer\\\'s solution, an artificial lymph that is used in disruptive neurobiological experiments.
The role of trace elements in the progression of atherosclerosis is examined in a pilot study. A differential quantification of the element content in an induced murine atherosclerotic lesion reveals elevated S and Ca levels in the artery wall adjacent to the lesion and an increase in iron in the lesion. The 3D quantitative distribution of elements is reconstructed by means of stacking the 2D quantitative maps of consecutive sections of an artery.
The feasibility of generating a quantitative elemental rodent brain atlas by Large Area Mapping is investigated by measuring at high beam currents. A whole coronal section of the rat brain was measured in segments in 14 h. Individual quantitative maps of the segments are pieced together to reconstruct a high-definition element distribution map of the whole section with a subcellular spatial resolution. The use of immunohistochemical staining enhanced with single elements helps in determining the cell specific element content. Its concurrent use with Large Area Mapping can give cellular element distribution maps.
|
2 |
Application of Ion Beam Methods in Biomedical Research: Quantitative Microscopy with Trace Element SensitivityBarapatre, Nirav 27 September 2013 (has links)
The methods of analysis with a focused ion beam, commonly termed as nuclear microscopy, include quantitative physical processes like PIXE and RBS. The element concentrations in a sample can be quantitatively mapped with a sub-micron spatial resolution and a sub-ppm sensitivity. Its fully quantitative and non-destructive nature makes it particularly suitable for analysing biological samples. The applications in biomedical research are manifold.
The iron overload hypothesis in Parkinson\\\''s disease is investigated by a differential analysis of human substantia nigra. The trace element content is quantified in neuromelanin, in microglia cells, and in extraneuronal environment. A comparison of six Parkinsonian cases with six control cases revealed no significant elevation in iron level bound to neuromelanin. In fact, a decrease in the Fe/S ratio of Parkinsonian neuromelanin was measured, suggesting a modification in its iron binding properties.
Drosophila melanogaster, or the fruit fly, is a widely used model organism in neurobiological experiments. The electrolyte elements are quantified in various organs associated with the olfactory signalling, namely the brain, the antenna and its sensilla hairs, the mouth parts, and the compound eye. The determination of spatially resolved element concentrations is useful in preparing the organ specific Ringer\\\''s solution, an artificial lymph that is used in disruptive neurobiological experiments.
The role of trace elements in the progression of atherosclerosis is examined in a pilot study. A differential quantification of the element content in an induced murine atherosclerotic lesion reveals elevated S and Ca levels in the artery wall adjacent to the lesion and an increase in iron in the lesion. The 3D quantitative distribution of elements is reconstructed by means of stacking the 2D quantitative maps of consecutive sections of an artery.
The feasibility of generating a quantitative elemental rodent brain atlas by Large Area Mapping is investigated by measuring at high beam currents. A whole coronal section of the rat brain was measured in segments in 14 h. Individual quantitative maps of the segments are pieced together to reconstruct a high-definition element distribution map of the whole section with a subcellular spatial resolution. The use of immunohistochemical staining enhanced with single elements helps in determining the cell specific element content. Its concurrent use with Large Area Mapping can give cellular element distribution maps.
|
Page generated in 0.0322 seconds