Spelling suggestions: "subject:"martial differential equations"" "subject:"martial ifferential equations""
381 |
Hyperbolická parciální diferenciální rovnice homogenního a nehomogenního vedení / Wave Partial Differential EquationSzöllös, Alexandr Unknown Date (has links)
This work deals with diffrential equations, with the possibility of using them for analysis of the line and the possibility of accelerating the computations in GPU using nVidia CUDA.
|
382 |
Využití jazyka Modelica pro modelování ve fyziologii. Modely s rozprostřenými parametery, Tvorba výukových simulátorů. / Modelica in physiological modelling. Models with spatially distributed parameters, Authorin educational simulators.Šilar, Jan January 2019 (has links)
Mathematical models in physiology are useful to formulate and verify hypotheses, to make predictions, to estimate hidden parameters and in education. This thesis deals with modelling in physiology using the Modelica language. New methods for model implementation and simulator production were developed. Modelica is an open standard equation-based object-oriented language for modelling complex systems. It is highly convenient in physiology modelling due to its ability to describe extensive models in a lucid hierarchical way. The models are described by algebraic, ordinary differential and discrete equations. Partial differential equations are not supported by the Modelica standard yet. The thesis focuses on two main topics: 1) modelling of systems described by partial differential equations in Modelica 2) production of web-based e-learning simulators driven by models implemented in Modelica. A Modelica language extension called PDEModelica1 for 1-dimensional partial differential equations was designed (based on a previous extension). The OpenModelica modelling tool was extended to support PDEModelica1 using the method of lines. A model of countercurrent heat exchange between the artery and vein in a leg of a bird standing in water was implemented using PDEModelica1 to prove its usability. The...
|
383 |
Monolithic multiphysics simulation of hypersonic aerothermoelasticity using a hybridized discontinuous Galerkin methodEngland, William Paul 12 May 2023 (has links) (PDF)
This work presents implementation of a hybridized discontinuous Galerkin (DG) method for robust simulation of the hypersonic aerothermoelastic multiphysics system. Simulation of hypersonic vehicles requires accurate resolution of complex multiphysics interactions including the effects of high-speed turbulent flow, extreme heating, and vehicle deformation due to considerable pressure loads and thermal stresses. However, the state-of-the-art procedures for hypersonic aerothermoelasticity are comprised of low-fidelity approaches and partitioned coupling schemes. These approaches preclude robust design and analysis of hypersonic vehicles for a number of reasons. First, low-fidelity approaches limit their application to simple geometries and lack the ability to capture small scale flow features (e.g. turbulence, shocks, and boundary layers) which greatly degrades modeling robustness and solution accuracy. Second, partitioned coupling approaches can introduce considerable temporal and spatial inaccuracies which are not trivially remedied. In light of these barriers, we propose development of a monolithically-coupled hybridized DG approach to enable robust design and analysis of hypersonic vehicles with arbitrary geometries. Monolithic coupling methods implement a coupled multiphysics system as a single, or monolithic, equation system to be resolved by a single simulation approach. Further, monolithic approaches are free from the physical inaccuracies and instabilities imposed by partitioned approaches and enable time-accurate evolution of the coupled physics system. In this work, a DG method is considered due to its ability to accurately resolve second-order partial differential equations (PDEs) of all classes. We note that the hypersonic aerothermoelastic system is composed of PDEs of all three classes. Hybridized DG methods are specifically considered due to their exceptional computational efficiency compared to traditional DG methods. It is expected that our monolithic hybridized DG implementation of the hypersonic aerothermoelastic system will 1) provide the physical accuracy necessary to capture complex physical features, 2) be free from any spatial and temporal inaccuracies or instabilities inherent to partitioned coupling procedures, 3) represent a transition to high-fidelity simulation methods for hypersonic aerothermoelasticity, and 4) enable efficient analysis of hypersonic aerothermoelastic effects on arbitrary geometries.
|
384 |
Path properties of KPZ modelsDas, Sayan January 2023 (has links)
In this thesis we investigate large deviation and path properties of a few models within the Kardar-Parisi-Zhang (KPZ) universality class.
The KPZ equation is the central object in the KPZ universality class. It is a stochastic PDE describing various objects in statistical mechanics such as random interface growth, directed polymers, interacting particle systems. In the first project we study one point upper tail large deviations of the KPZ equation 𝜢(t,x) started from narrow wedge initial data. We obtain precise expression of the upper tail LDP in the long time regime for the KPZ equation. We then extend our techniques and methods to obtain upper tail LDP for the asymmetric exclusion process model, which is a prelimit of the KPZ equation.
In the next direction, we investigate temporal path properties of the KPZ equation. We show that the upper and lower law of iterated logarithms for the rescaled KPZ temporal process occurs at a scale (log log 𝑡)²/³ and (log log 𝑡)¹/³ respectively. We also compute the exact Hausdorff dimension of the upper level sets of the solution, i.e., the set of times when the rescaled solution exceeds 𝛼(log log 𝑡)²/³. This has relevance from the point of view of fractal geometry of the KPZ equation.
We next study superdiffusivity and localization features of the (1+1)-dimensional continuum directed random polymer whose free energy is given by the KPZ equation. We show that for a point-to-point polymer of length 𝑡 and any 𝑝 ⋲ (0,1), the point on the path which is 𝑝𝑡 distance away from the origin stays within a 𝑂(1) stochastic window around a random point 𝙈_𝑝,𝑡 that depends on the environment. This provides an affirmative case of the folklore `favorite region' conjecture. Furthermore, the quenched density of the point when centered around 𝙈_𝑝,𝑡 converges in law to an explicit random density function as 𝑡 → ∞ without any scaling. The limiting random density is proportional to 𝑒^{-𝓡(x)} where 𝓡(x) is a two-sided 3D Bessel process with diffusion coefficient 2. Our proof techniques also allow us to prove properties of the KPZ equation such as ergodicity and limiting Bessel behaviors around the maximum. In a follow up project, we show that the annealed law of polymer of length 𝑡, upon 𝑡²/³ superdiffusive scaling, is tight (as 𝑡 → ∞) in the space of 𝐶([0,1]) valued random variables. On the other hand, as 𝑡 → 0, under diffusive scaling, we show that the annealed law of the polymer converges to Brownian bridge.
In the final part of this thesis, we focus on an integrable discrete half-space variant of the CDRP, called half-space log-gamma polymer.We consider the point-to-point log-gamma polymer of length 2𝑁 in a half-space with i.i.d.Gamma⁻¹(2𝛳) distributed bulk weights and i.i.d. Gamma⁻¹(𝛼+𝛳) distributed boundary weights for 𝛳 > 0 and 𝛼 > -𝛳. We establish the KPZ exponents (1/3 fluctuation and 2/3 transversal) for this model when 𝛼 ≥ 0. In particular, in this regime, we show that after appropriate centering, the free energy process with spatial coordinate scaled by 𝑁²/³ and fluctuations scaled by 𝑁¹/³ is tight.
The primary technical contribution of our work is to construct the half-space log-gamma Gibbsian line ensemble and develop a toolbox for extracting tightness and absolute continuity results from minimal information about the top curve of such half-space line ensembles. This is the first study of half-space line ensembles. The 𝛼 ≥ 0 regime correspond to a polymer measure which is not pinned at the boundary. In a companion work, we investigate the 𝛼 < 0 setting. We show that in this case, the endpoint of the point-to-line polymer stays within 𝑂(1) window of the diagonal. We also show that the limiting quenched endpoint distribution of the polymer around the diagonal is given by a random probability mass function proportional to the exponential of a random walk with log-gamma type increments.
|
385 |
Completely Residual Based Code VerificationBrubaker, Lauren P. 18 May 2006 (has links)
No description available.
|
386 |
Method of trimming PDE surfacesUgail, Hassan January 2006 (has links)
A method for trimming surfaces generated as solutions to Partial Differential Equations
(PDEs) is presented. The work we present here utilises the 2D parameter
space on which the trim curves are defined whose projection on the parametrically
represented PDE surface is then trimmed out. To do this we define the trim curves
to be a set of boundary conditions which enable us to solve a low order elliptic
PDE on the parameter space. The chosen elliptic PDE is solved analytically, even
in the case of a very general complex trim, allowing the design process to be carried
out interactively in real time. To demonstrate the capability for this technique we
discuss a series of examples where trimmed PDE surfaces may be applicable.
|
387 |
Wildfire Modeling with Data AssimilationJohnston, Andrew 14 December 2022 (has links)
Wildfire modeling is a complex, computationally costly endeavor, but with droughts worsening and fires burning across the western United States, obtaining accurate wildfire predictions is more important than ever. In this paper, we present a novel approach to wildfire modeling using data assimiliation. We model wildfire spread with a modification of the partial differential equation model described by Mandel et al. in their 2008 paper. Specifically, we replace some constant parameter values with geospatial functions of fuel type. We combine deep learning and remote sensing to obtain real-time data for the model and employ the Nelder-Mead method to recover optimal model parameters with data assimilation. We demonstrate the efficacy of this approach on computer-generated fires, as well as real fire data from the 2021 Dixie Fire in California. On generated fires, this approach resulted in an average Jaccard index of 0.996 between the predicted and actual fire perimeters and an average Kulczynski measure of 0.997. On data from the Dixie Fire, the average Jaccard index achieved was 0.48, and the average Kulczynski measure was 0.66.
|
388 |
PDEModelica - Towards a High-Level Language for Modeling with Partial Differential EquationsSaldamli, Levon January 2002 (has links)
This thesis describes initial language extensions to the Modelica language to define a more general language called PDEModelica, with built-in support for modeling with partial differential equations (PDEs). Modelica® is a standardized modeling language for objectoriented, equation-based modeling. It also supports component-based modeling where existing components with modified parameters can be combined into new models. The aim of the language presented in this thesis is to maintain the advantages of Modelica and also add partial differential equation support. Partial differential equations can be defined using a coefficient-based approach, where a predefined PDE is modified by changing its coefficient values. Language operators to directly express PDEs in the language are also discussed. Furthermore, domain geometry description is handled and language extensions to describe geometries are presented. Boundary conditions, required for a complete PDE problem definition, are also handled. A prototype implementation is described as well. The prototype includes a translator written in the relational meta-language, RML, and interfaces to external software such as mesh generators and PDE solvers, which are needed to solve PDE problems. Finally, a few examples modeled with PDEModelica and solved using the prototype are presented. / <p>Report code: LiU-Tek-Lic-2002:63.</p>
|
389 |
External Verification Analysis: A Code-Independent Approach to Verifying Unsteady Partial Differential Equation SolversIngraham, Daniel January 2015 (has links)
No description available.
|
390 |
Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two--Dimensional Unbounded DomainGustafsson, Carl Fredrik Jonathan 04 1900 (has links)
<p>This thesis is a numerical investigation of two-dimensional steady flows past a circular obstacle. In the fluid dynamics research there are few computational results concerning the structure of the steady wake flows at Reynolds numbers larger than 100, and the state-of-the-art results go back to the work of Fornberg (1980) Fornberg (1985). The radial velocity component approaches its asymptotic value relatively slowly if the solution is ``physically reasonable''. This presents a difficulty when using the standard approach such as domain truncation. To get around this problem, in the present research we will develop a spectral technique for the solution of the steady Navier-Stokes system. We introduce the ``bootstrap" method which is motivated by the mathematical fact that solutions of the Oseen system have the same asymptotic structure at infinity as the solutions of the steady Navier-Stokes system with the same boundary conditions. Thus, in the ``bootstrap" method, the streamfunction is calculated as a perturbation to the solution to the Oseen system. Solutions are calculated for a range of Reynolds number and we also investigate the solutions behaviour when the Reynolds number goes to infinity. The thesis compares the numerical results obtained using the proposed spectral ``bootstrap" method and a finite--difference approach for unbounded domains against previous results. For Reynolds numbers lower than 100, the wake is slender and similar to the flow hypothesized by Kirchoff (1869) and Levi-Civita (1907). For large Reynolds numbers the wake becomes wider and appears more similar to the Prandtl-Batchelor flow, see Batchelor (1956).</p> / Doctor of Science (PhD)
|
Page generated in 0.721 seconds