• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aumento da testabilidade do hardware com auxilio de técnicas de teste de software / Hardware testyability increase with software testing techniques

Krug, Margrit Reni January 2007 (has links)
O projeto, seja ele de software ou hardware, envolve uma série de atividades que, apesar das técnicas, ferramentas e métodos empregados, não estão livres de erros que podem levar ao mau funcionamento do produto final. Estes erros podem ocorrer durante a especificação do projeto, como também em estágios finais do desenvolvimento ou no processo de manufatura. A fim de minimizar prejuízos é necessário garantir a qualidade do sistema a partir da verificação do projeto, da validação de protótipo e do teste de fabricação. Por muito tempo o teste de hardware e o teste de software foram estudados como disciplinas completamente independentes. Porém, similaridades entre o desenvolvimento de software e o projeto de hardware já foram exploradas com sucesso em adaptações de técnicas originalmente desenvolvidas para um sendo utilizadas por outro. Um exemplo é a cobertura de código, que foi inicialmente desenvolvida para o teste de software, e agora é comumente utilizada na verificação de hardware. Visto que dispositivos são descritos em linguagem de descrição de hardware, e estas possuem características semelhantes às linguagens de programação, parece uma boa alternativa valer-se desta semelhança para utilizar os métodos propostos pela engenharia de software para garantir a qualidade do hardware desenvolvido. Utilizar tais métodos para gerar padrões de teste para dispositivos de hardware descritos em HDL (Hardware Description Language) e identificar nestas descrições características que, alteradas, aumentem a testabilidade dos mesmos, são os principais objetivos desta tese. / Both software and hardware designs require several tasks to increase reliability and ensure high quality of the final system. Although different techniques, tools and methods can be applied, error free products are difficult to be achieved. Errors may occur on design specification, on development stages and also during manufacturing process. To increase system quality and minimize costs it is mandatory to perform design verification, prototype validation and manufacturing test. For a long time hardware and software tests were studied as disciplines completely apart. However, similarities between software development and hardware design have already been explored successfully by adapting techniques originally developed for one of them, and applying to the other. For instance, code coverage concept and methods were firstly developed for software testing, but nowadays are commonly used in hardware verification. Due to the high similarity observed between software programming languages and hardware description languages (HDL), it seems to be a valuable approach applying software engineering techniques to help ensuring a high quality hardware device. Therefore, the main purpose of this thesis is to use such techniques to extract test patterns from HDL descriptions of hardware devices and to identify at these descriptions means to increase hardware testability.
2

Aumento da testabilidade do hardware com auxilio de técnicas de teste de software / Hardware testyability increase with software testing techniques

Krug, Margrit Reni January 2007 (has links)
O projeto, seja ele de software ou hardware, envolve uma série de atividades que, apesar das técnicas, ferramentas e métodos empregados, não estão livres de erros que podem levar ao mau funcionamento do produto final. Estes erros podem ocorrer durante a especificação do projeto, como também em estágios finais do desenvolvimento ou no processo de manufatura. A fim de minimizar prejuízos é necessário garantir a qualidade do sistema a partir da verificação do projeto, da validação de protótipo e do teste de fabricação. Por muito tempo o teste de hardware e o teste de software foram estudados como disciplinas completamente independentes. Porém, similaridades entre o desenvolvimento de software e o projeto de hardware já foram exploradas com sucesso em adaptações de técnicas originalmente desenvolvidas para um sendo utilizadas por outro. Um exemplo é a cobertura de código, que foi inicialmente desenvolvida para o teste de software, e agora é comumente utilizada na verificação de hardware. Visto que dispositivos são descritos em linguagem de descrição de hardware, e estas possuem características semelhantes às linguagens de programação, parece uma boa alternativa valer-se desta semelhança para utilizar os métodos propostos pela engenharia de software para garantir a qualidade do hardware desenvolvido. Utilizar tais métodos para gerar padrões de teste para dispositivos de hardware descritos em HDL (Hardware Description Language) e identificar nestas descrições características que, alteradas, aumentem a testabilidade dos mesmos, são os principais objetivos desta tese. / Both software and hardware designs require several tasks to increase reliability and ensure high quality of the final system. Although different techniques, tools and methods can be applied, error free products are difficult to be achieved. Errors may occur on design specification, on development stages and also during manufacturing process. To increase system quality and minimize costs it is mandatory to perform design verification, prototype validation and manufacturing test. For a long time hardware and software tests were studied as disciplines completely apart. However, similarities between software development and hardware design have already been explored successfully by adapting techniques originally developed for one of them, and applying to the other. For instance, code coverage concept and methods were firstly developed for software testing, but nowadays are commonly used in hardware verification. Due to the high similarity observed between software programming languages and hardware description languages (HDL), it seems to be a valuable approach applying software engineering techniques to help ensuring a high quality hardware device. Therefore, the main purpose of this thesis is to use such techniques to extract test patterns from HDL descriptions of hardware devices and to identify at these descriptions means to increase hardware testability.
3

Aumento da testabilidade do hardware com auxilio de técnicas de teste de software / Hardware testyability increase with software testing techniques

Krug, Margrit Reni January 2007 (has links)
O projeto, seja ele de software ou hardware, envolve uma série de atividades que, apesar das técnicas, ferramentas e métodos empregados, não estão livres de erros que podem levar ao mau funcionamento do produto final. Estes erros podem ocorrer durante a especificação do projeto, como também em estágios finais do desenvolvimento ou no processo de manufatura. A fim de minimizar prejuízos é necessário garantir a qualidade do sistema a partir da verificação do projeto, da validação de protótipo e do teste de fabricação. Por muito tempo o teste de hardware e o teste de software foram estudados como disciplinas completamente independentes. Porém, similaridades entre o desenvolvimento de software e o projeto de hardware já foram exploradas com sucesso em adaptações de técnicas originalmente desenvolvidas para um sendo utilizadas por outro. Um exemplo é a cobertura de código, que foi inicialmente desenvolvida para o teste de software, e agora é comumente utilizada na verificação de hardware. Visto que dispositivos são descritos em linguagem de descrição de hardware, e estas possuem características semelhantes às linguagens de programação, parece uma boa alternativa valer-se desta semelhança para utilizar os métodos propostos pela engenharia de software para garantir a qualidade do hardware desenvolvido. Utilizar tais métodos para gerar padrões de teste para dispositivos de hardware descritos em HDL (Hardware Description Language) e identificar nestas descrições características que, alteradas, aumentem a testabilidade dos mesmos, são os principais objetivos desta tese. / Both software and hardware designs require several tasks to increase reliability and ensure high quality of the final system. Although different techniques, tools and methods can be applied, error free products are difficult to be achieved. Errors may occur on design specification, on development stages and also during manufacturing process. To increase system quality and minimize costs it is mandatory to perform design verification, prototype validation and manufacturing test. For a long time hardware and software tests were studied as disciplines completely apart. However, similarities between software development and hardware design have already been explored successfully by adapting techniques originally developed for one of them, and applying to the other. For instance, code coverage concept and methods were firstly developed for software testing, but nowadays are commonly used in hardware verification. Due to the high similarity observed between software programming languages and hardware description languages (HDL), it seems to be a valuable approach applying software engineering techniques to help ensuring a high quality hardware device. Therefore, the main purpose of this thesis is to use such techniques to extract test patterns from HDL descriptions of hardware devices and to identify at these descriptions means to increase hardware testability.
4

Efficient Graph Techniques for Partial Scan Pattern Debug and Bounded Model Checkers

Misra, Supratik Kumar 06 March 2012 (has links)
Continuous advances in VLSI technology have led to more complex digital designs and shrinking transistor sizes. Due to these developments, design verification and manufacturing test have gained more importance and 70 % of the design expenditure in on validation processes. Electronic Design Automation (EDA) tools play a huge role in the validation process with various verification and test tools. Their efficiency have a high impact in saving time and money in this competitive market. Direct Acyclic Graphs (DAGs) are the backbone for most of the EDA tools. DAG is the most efficient data structure to store circuit information and also have efficient backt traversing structure which help in developing reasoning/ debugging tools. In this thesis, we focus on two such EDA tools using graphs as their underlying structure for circuit information storage • Scan pattern Debugger for Partial Scan Designs • Circuit SAT Bounded Model Checkers We developed a complete Interactive Scan Pattern Debugger Suite currently being used in the industry for next generation microprocessor design. The back end is an implication graph based sequential logic simulator which creates a Debug Implication Graph during the logic simulation of the failing patterns. An efficient node traversal mechanism across time frames, in the DIG, is used to perform the root-cause analysis for the failing scan-cells. In addition, the debugger provides visibility into the circuit internals to understand and fix the root-cause. We integrated the proposed technique into the scan ATPG flow for industrial microprocessor designs. We were able to resolve the First Silicon logical pattern failures within hours, which would have otherwise taken a few days of manual effort for root-causing the failure, understanding the root-cause and fixing it. For our circuit SAT implementation, we replace the internal implication graph used by the SAT solver with our debug implication graph (DIG). There is a high amount of circuit unrolling in circuit SAT/ BMC (Bounded Model Checking) problems which creates copies of the same combinational blocks in multiple time frames. This allows us to use the repetitive circuit structure and club it with the CNF database in the SAT solver. We propose a new data structure to store data in a circuit SAT solver which results up to 90% reduction in number of nodes. / Master of Science

Page generated in 0.0363 seconds