• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 59
  • 23
  • 21
  • 18
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 324
  • 324
  • 324
  • 64
  • 62
  • 60
  • 56
  • 44
  • 39
  • 37
  • 36
  • 36
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Study of an Alternative Dispatch Planning for the Salvadorian Electrical Market Based on Generators Outage Risk and Optimum AGC-Performance

Adonay, Francisco 29 June 2009 (has links)
A proposal for the spinning reserve assessment and allocation for El Salvador¡¦s Deregulated Electricity Market is formulated. Traditionally, the Independent System Operator calculates the spinning reserve as percentage of the forecast demand. And Automatic Generation Control (AGC) is allocated based on the partition factor. The reserve calculation neither reflects consistency achieving its main objective, reliability, nor is optimum performance control reached by the allocating mechanism. In the proposed method, the spinning reserve is estimated taking into account the generators outage ratio and AGC is allocated based on the North American Electric Reliability Corporation¡¦s Control Performance Standard-1. The allocation problem is solved with an improved Particle Swarm Optimization algorithm with a technique to modify the inertial factor on each iteration. The proposed method exhibits better results and it matches the Salvadorian technical requirements and market characteristics.
142

Face Detection using Swarm Intelligence

Lang, Andreas 18 January 2011 (has links) (PDF)
Groups of starlings can form impressive shapes as they travel northward together in the springtime. This is among a group of natural phenomena based on swarm behaviour. The research field of artificial intelligence in computer science, particularly the areas of robotics and image processing, has in recent decades given increasing attention to the underlying structures. The behaviour of these intelligent swarms has opened new approaches for face detection as well. G. Beni and J. Wang coined the term “swarm intelligence” to describe this type of group behaviour. In this context, intelligence describes the ability to solve complex problems. The objective of this project is to automatically find exactly one face on a photo or video material by means of swarm intelligence. The process developed for this purpose consists of a combination of various known structures, which are then adapted to the task of face detection. To illustrate the result, a 3D hat shape is placed on top of the face using an example application program.
143

Scheduling optimization of cellular flowshop with sequence dependent setup times

Ibrahem, Al-mehdi Mohamed M. 30 April 2014 (has links)
In cellular manufacturing systems, minimization of the completion time has a great impact on the production time, material flow, and productivity. An effective scheduling is crucial to attaining the advantages of cellular manufacturing systems. This dissertation attempts to solve the Flowshop Manufacturing Cell (cellular flowshop) Scheduling Problem with Sequence Dependent Setup Times (FMCSP with SDSTs) considering two performance measures: the total flow time as a mono objective, and the makespan and total flow time combined as a bi-criteria scheduling problem. The proposed problem is known to be the NP-hard problem because of its complexity. Several metaheuristic algorithms based on Genetic Algorithm (GA), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) are developed for scheduling part families as well as jobs within each part family for FMCSP with SDSTs to minimize the total flow time. A local search method based on SA combined with PSO (named as PSO-SA) is proposed to enhance the intensification and improve the quality of the solution obtained by pure PSO. The effectiveness and efficiency of the proposed metaheuristics are evaluated based on the Relative Percentage Deviation (RPD) from its lower bound, and the robustness. Results indicate PSO-SA is performed similar to best available algorithms for small and medium size test problems. Yet, there is a very small deviation from best results for large problems. A Multi-objective Particle Swarm Optimization (MPSO) and a Multi-objective Simulated Annealing (MOSA) Algorithm are further proposed to solve the bi-criteria optimization problem to minimize the total flow time and makespan simultaneously. An improved PSO is combined with Threshold Acceptance (TA) algorithm to improve effectiveness of the proposed MPSO (named as IMPSO-TA) for the convergence of the obtained Pareto Front. The proposed algorithms are evaluated using several Quality Indicators (QI) measures for multiobjective optimization problems. The proposed algorithms can generate approximated Pareto Fronts in a reasonable CPU time. The proposed IMPSO-SA outperforms MOSA algorithm in terms of CPU time and minimizing the objective functions. / October 2015
144

Uma formulação viscoelastoplástica não linear aplicada ao polietileno de alta densidade (PEAD) / Non-linear viscoelastoplastic formulation applied to high density polyethylene (HDPE)

Kühl, André 22 August 2014 (has links)
Made available in DSpace on 2016-12-12T20:25:11Z (GMT). No. of bitstreams: 1 Andre Kuhl.pdf: 12025109 bytes, checksum: e0f22f36783135377a43b5177d54ce28 (MD5) Previous issue date: 2014-08-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In recent years, High Density Polyethylene (HDPE) has been widely used in structural engineering applications, especially in the manufacture of pipes for transporting water, gas and sewage. This growth can be attributed to its excellent mechanical properties and good impact resistance, high tensile strength, low weight compared to metallic materials, corrosion resistance, good fatigue behavior, flexibility and easy processability. In view of this, reliable procedures to evaluate the structural response of components manufactured with this material have become increasingly important. HDPE has non linear viscoelastoplastic behavior, which means that the properties depend on time and applied load. So the aim of this work is to propose a model that considers the viscoelastoplastic behavior of HDPE and to develop a procedure to identify the material parameters. The model adopted is based on the Prony series for viscoelasticity and the power law of Zapas-Crissman for viscoplasticity. The associated material parameters are obtained from experimental creep-recovery tests for different stress levels in constant temperature. This type of test allows to employ an uncoupled procedure for material parameters identification for viscoelastic and viscoplastic strains. So, first, the viscoelastic parameters are obtained by the method of Particle Swarm Optimization (PSO). Also, a study of the influence of the number of particles and generations is presented for better analysis and evaluation of the method. Then the viscoplastic parameters are determined by linear regression. The response obtained by the model shows a good prediction of experimental tests. After the material parameters identification for each stress level, a procedure of linear interpolation is adopted to find the material parameters in intermediate stress (untested). Then, a numerical routine was developed with the material formulation proposed and the interpolation coefficients procedure and the results of the stress-strain behavior were determined. Finally, discussions of the results are presented evaluating the coefficients obtained, the optimization method and the implementation of the material formulation and concluding that the proposed procedure is suitable for the identification of nonlinear HDPE viscoelastoplastic parameters. / Nos últimos anos, o Polietileno de Alta Densidade (PEAD) tem sido amplamente utilizado em aplicações estruturais de engenharia, principalmente na confecção de tubulações para transporte de água, gás e esgoto. Esse crescimento pode ser atribuído às suas excelentes propriedades mecânicas como boa resistência ao impacto, alta resistência à tração, baixo peso quando comparado com materiais metálicos, resistência à corrosão, bom comportamento em fadiga, além de flexibilidade e fácil processabilidade. Em vista disso, procedimentos confiáveis para avaliar a resposta estrutural de componentes manufaturados com este material têm se tornado progressivamente importantes. O PEAD apresenta comportamento viscoelastoplástico não linear, ou seja, suas propriedades dependem do tempo e da carga aplicada. Portanto, o objetivo desse trabalho foi propor uma formulação que considere o comportamento viscoplástico do PEAD e um procedimento de identificação dos parâmetros materiais associados. O modelo é baseado em séries de Prony para a viscoelasticidade e a lei de potência de Zapas-Crissman para viscoplasticidade. Os parâmetros materiais associados são obtidos de ensaios experimentais de fluência-recuperação para diferentes níveis de tensão com temperatura controlada. Esse tipo de ensaio permite empregar um procedimento de identificação de parâmetros desacoplados, onde é possível determinar a deformação viscoelástica independente da deformação viscoplástica. Assim, inicialmente, obtêm-se os parâmetros viscoelásticos através do método de otimização por enxame de partículas (Particle Swarm Optimization - PSO). Depois, os parâmetros viscoplásticos são determinados por regressão linear. A resposta obtida pelo modelo mostra uma boa predição do comportamento experimental. Já com os parâmetros materiais identificados para cada nível de tensão, um procedimento de interpolação linear é adotado para encontrar os parâmetros materiais em tensões intermediárias (não ensaiadas). Na seqüência, uma rotina numérica é desenvolvida com a formulação material proposta juntamente com as interpolações dos coeficientes e resultados do comportamento do modelo foram determinados. Por fim, as discussões dos resultados são apresentadas avaliando os coeficientes obtidos, o comportamento do método de otimização e a implementação da formulação material e concluindo que o procedimento proposto é adequado para a identificação dos parâmetros viscoelastoplásticos não lineares do PEAD.
145

Planejamento de trajetórias livres de colisão : um estudo considerando restrições cinemáticas e dinâmicas de um manipulador pneumático por meio de algoritmos metaheurísticos

Izquierdo, Rafael Crespo January 2017 (has links)
presente trabalho consolida um estudo para o planejamento de trajetória livre de colisão para um robô pneumático com 5 graus de liberdade aplicando três algoritmos metaheurísticos: algoritmos metaheurísticos por vagalumes, algoritmos metaheurísticos por enxames de partículas e algoritmos genéticos. No que se refere à aplicação de algoritmos metaheurísticos ao estudo de planejamento de trajetória de robôs manipuladores na presença de obstáculos, existem diferentes tipos de técnicas para evitar colisões que consideram os efeitos cinemáticos e dinâmicos na obtenção de trajetórias com o menor tempo, torque, etc. Neste estudo, são propostas contribuições à aplicação dessas técnicas especificamente a robôs manipuladores pneumáticos, sobretudo, no que diz respeito às características específicas dos servoposicionadores pneumáticos, como, por exemplo, a modelagem do atrito desses sistemas, o cálculo da massa equivalente, etc. A metodologia utilizada é definida em duas etapas. A primeira delas consiste na obtenção de pontos intermediários, adquiridos considerando a menor distância entre os mesmos e o ponto final, gerados considerando a presença de obstáculos (cilindros, cubos e esferas) Esses obstáculos são mapeados em regiões de colisão, que constituem restrições para o problema de otimização. A segunda etapa baseia-se no estudo do planejamento de trajetórias: aplicam-se b-splines de 5º e 7º grau na interpolação dos pontos intermediários, com vistas à obtenção de trajetórias que considerem, de um lado, a menor força dos atuadores associada à dinâmica do manipulador em estudo e, de outro, restrições cinemáticas e dinâmicas, determinadas por meio das características operacionais dos servoposicionadores pneumáticos. Os resultados mostram que a metodologia proposta é adequada para tarefas de manipulação de peças na presença de obstáculos, uma vez que os pontos intermediários situam-se fora da região de colisão nos três casos aqui apresentados. Além disso, quanto à segunda etapa, observou-se que as trajetórias de 5º e 7º grau apresentaram resultados similares, de maneira que os erros obtidos poderiam ser melhorados analisando aspectos associados ao controlador do robô em estudo. / The thesis presents a study for collision-free trajectory planning for a pneumatic robot with 5 degrees of freedom applying three metaheuristic algorithms: firefly metaheuristic algorithm, particle swarm optimization and genetic algorithms. As regards the application of metaheuristic algorithms to the study of the trajectory planning of manipulating robots in the presence of obstacles, there are different types of techniques to avoid collisions that consider the kinematic and dynamic effects, obtaining trajectories with the optimal time, torque, etc. In this study, contributions are made to the application of these techniques specifically to pneumatic manipulator robots, particularly with regard to the specific characteristics of pneumatic servo-actuators, such as friction modeling of these systems, calculation of equivalent mass, etc. The methodology used is defined in two steps. The first one consists of obtaining intermediate points, acquired considering the smallest distance between the intermediate points and the final point, generated considering the presence of obstacles (cylinders, cubes and spheres) These obstacles are mapped in collision regions, which are constraints to the optimization problem. The second step is based on the study of the trajectory planning: 5th and 7th degree b-splines are applied in the interpolation of the intermediate points, in order to obtain trajectories that consider the smallest actuator force associated to the dynamics of the manipulator and the kinematic and dynamic constraints, determined by the operational characteristics of pneumatic servo-positioners. The results show that the proposed methodology is suitable for tasks of manipulating parts in the presence of obstacles because the intermediate points are outside the collision region in the three cases presented here. In addition, it was observed that the trajectories of 5th and 7th degree presented similar results, so that the errors obtained could be improved by analyzing aspects associated to the controller of the robot.
146

A Model Fusion Based Framework For Imbalanced Classification Problem with Noisy Dataset

January 2014 (has links)
abstract: Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research proposes a unified model fusion based framework to handle the imbalanced classification with noisy dataset. The phase I study focuses on the imbalanced classification problem. A generative classifier, Gaussian Mixture Model (GMM) is studied which can learn the distribution of the imbalance data to improve the discrimination power on imbalanced classes. By fusing this knowledge into cost SVM (cSVM), a CSG method is proposed. Experimental results show the effectiveness of CSG in dealing with imbalanced classification problems. The phase II study expands the research scope to include the noisy dataset into the imbalanced classification problem. A model fusion based framework, K Nearest Gaussian (KNG) is proposed. KNG employs a generative modeling method, GMM, to model the training data as Gaussian mixtures and form adjustable confidence regions which are less sensitive to data imbalance and noise. Motivated by the K-nearest neighbor algorithm, the neighboring Gaussians are used to classify the testing instances. Experimental results show KNG method greatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset. The phase III study addresses the issues of feature selection and parameter tuning of KNG algorithm. To further improve the performance of KNG algorithm, a Particle Swarm Optimization based method (PSO-KNG) is proposed. PSO-KNG formulates model parameters and data features into the same particle vector and thus can search the best feature and parameter combination jointly. The experimental results show that PSO can greatly improve the performance of KNG with better accuracy and much lower computational cost. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2014
147

Planejamento de trajetórias livres de colisão : um estudo considerando restrições cinemáticas e dinâmicas de um manipulador pneumático por meio de algoritmos metaheurísticos

Izquierdo, Rafael Crespo January 2017 (has links)
presente trabalho consolida um estudo para o planejamento de trajetória livre de colisão para um robô pneumático com 5 graus de liberdade aplicando três algoritmos metaheurísticos: algoritmos metaheurísticos por vagalumes, algoritmos metaheurísticos por enxames de partículas e algoritmos genéticos. No que se refere à aplicação de algoritmos metaheurísticos ao estudo de planejamento de trajetória de robôs manipuladores na presença de obstáculos, existem diferentes tipos de técnicas para evitar colisões que consideram os efeitos cinemáticos e dinâmicos na obtenção de trajetórias com o menor tempo, torque, etc. Neste estudo, são propostas contribuições à aplicação dessas técnicas especificamente a robôs manipuladores pneumáticos, sobretudo, no que diz respeito às características específicas dos servoposicionadores pneumáticos, como, por exemplo, a modelagem do atrito desses sistemas, o cálculo da massa equivalente, etc. A metodologia utilizada é definida em duas etapas. A primeira delas consiste na obtenção de pontos intermediários, adquiridos considerando a menor distância entre os mesmos e o ponto final, gerados considerando a presença de obstáculos (cilindros, cubos e esferas) Esses obstáculos são mapeados em regiões de colisão, que constituem restrições para o problema de otimização. A segunda etapa baseia-se no estudo do planejamento de trajetórias: aplicam-se b-splines de 5º e 7º grau na interpolação dos pontos intermediários, com vistas à obtenção de trajetórias que considerem, de um lado, a menor força dos atuadores associada à dinâmica do manipulador em estudo e, de outro, restrições cinemáticas e dinâmicas, determinadas por meio das características operacionais dos servoposicionadores pneumáticos. Os resultados mostram que a metodologia proposta é adequada para tarefas de manipulação de peças na presença de obstáculos, uma vez que os pontos intermediários situam-se fora da região de colisão nos três casos aqui apresentados. Além disso, quanto à segunda etapa, observou-se que as trajetórias de 5º e 7º grau apresentaram resultados similares, de maneira que os erros obtidos poderiam ser melhorados analisando aspectos associados ao controlador do robô em estudo. / The thesis presents a study for collision-free trajectory planning for a pneumatic robot with 5 degrees of freedom applying three metaheuristic algorithms: firefly metaheuristic algorithm, particle swarm optimization and genetic algorithms. As regards the application of metaheuristic algorithms to the study of the trajectory planning of manipulating robots in the presence of obstacles, there are different types of techniques to avoid collisions that consider the kinematic and dynamic effects, obtaining trajectories with the optimal time, torque, etc. In this study, contributions are made to the application of these techniques specifically to pneumatic manipulator robots, particularly with regard to the specific characteristics of pneumatic servo-actuators, such as friction modeling of these systems, calculation of equivalent mass, etc. The methodology used is defined in two steps. The first one consists of obtaining intermediate points, acquired considering the smallest distance between the intermediate points and the final point, generated considering the presence of obstacles (cylinders, cubes and spheres) These obstacles are mapped in collision regions, which are constraints to the optimization problem. The second step is based on the study of the trajectory planning: 5th and 7th degree b-splines are applied in the interpolation of the intermediate points, in order to obtain trajectories that consider the smallest actuator force associated to the dynamics of the manipulator and the kinematic and dynamic constraints, determined by the operational characteristics of pneumatic servo-positioners. The results show that the proposed methodology is suitable for tasks of manipulating parts in the presence of obstacles because the intermediate points are outside the collision region in the three cases presented here. In addition, it was observed that the trajectories of 5th and 7th degree presented similar results, so that the errors obtained could be improved by analyzing aspects associated to the controller of the robot.
148

Contributions to the efficient switch placement and automatic restoration of power distribution systems / ContribuiÃÃes para posicionamento eficiente de chaves e restauraÃÃo automÃtica de redes de distribuiÃÃo de energia elÃtrica

Josà Roberto Bezerra 16 December 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / The demand for electricity grows in the same way as the consumers requirement for an uninterrupted supply. Many reliability indices are applied by regulatory agencies, utilities and consumers for measuring the power systems reliability. The improvement of such indices has been required by regulatory agencies and pursued by energy distributors. Therefore, the application of automatic restauration systems has gained relevance as a support tool for control center operators for a quick and secure restauration of faulty electric networks. This work proposes two contributions to the restoration process of radial power system networks. The former is a multiobjective algorithm for effective switch placement in distribution networks. Multiobjective optimization techniques are applied to achieve a set of non-dominated solutions rather than an unique one. Therefore, the decision making for switch placement is eased by the flexibility given from the multiple solutions. The latter contribution is a model for automatic restoration of power distribution networks adaptable to the network topology changes and able to ensure the operational security of the power system network. The proposed model is based on coloured Petri nets as the modelling tool. Reusability and extensibility features have been pursued and implemented on the proposed model. As a result, the needed time to restore faulty power system networks is reduced without compromising its operational security. Case studies are presented demonstrating the benefits to the power system distribution utilities obtained with the deployment of the proposed tools to improve the reliability of the power system networks. / A demanda por energia elÃtrica cresce e de igual modo a exigÃncia dos consumidores pela continuidade do seu fornecimento. Diversos Ãndices de confiabilidade sÃo utilizados por agÃncias reguladoras, concessionÃrias e consumidores para aferir a continuidade dos sistemas elÃtricos de potÃncia. A melhoria de tais Ãndices vem sendo requisitada por agÃncias reguladoras e perseguida pelas concessionÃrias de energia. Para tanto, o uso de sistemas de restauraÃÃo automÃtica vem ganhando destaque como uma ferramenta de apoio a operadores de centros de controle para a restauraÃÃo rÃpida e segura de redes elÃtricas em situaÃÃes de falta. Este trabalho apresenta duas contribuiÃÃes para a restauraÃÃo automÃtica de redes radiais de distribuiÃÃo de energia. A primeira consiste em um algoritmo para o posicionamento eficiente de chaves telecontroladas em redes de distribuiÃÃo. TÃcnicas de otimizaÃÃo multiobjetivo sÃo aplicadas para obter-se como resultado um conjunto de soluÃÃes nÃo-dominadas ao invÃs de uma Ãnica soluÃÃo. Com isso, a tomada de decisÃo para o posicionamento eficiente de chaves na rede elÃtrica à facilitado pela flexibilidade das mÃltiplas soluÃÃes oferecidas pelo algoritmo proposto. A segunda contribuiÃÃo do trabalho consiste em um modelo para restauraÃÃo automÃtica da rede de distribuiÃÃo de energia adaptÃvel Ãs mudanÃas de topologia e que garante a seguranÃa operacional da rede elÃtrica. O modelo proposto fundamentou-se em Redes de Petri Coloridas como ferramenta de modelagem. CaracterÃsticas de reusabilidade e extensibilidade foram buscadas e implementadas no modelo proposto. Como resultado, o tempo necessÃrio para restaurar redes elÃtricas em condiÃÃo de falta à reduzido sem comprometer a seguranÃa do sistema elÃtrico. Estudos de caso sÃo apresentados evidenciando os benefÃcios para concessionÃrias de distribuiÃÃo de energia com a implementaÃÃo das ferramentas propostas para melhoria da confiabilidade da rede elÃtrica.
149

Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward

LIMA, Natália Flora De 29 August 2011 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-08-24T17:35:05Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertacao-Natalia_Flora_de_Lima.pdf: 2000980 bytes, checksum: 107f0691d21b9d94e253d08f06a4fbdd (MD5) / Made available in DSpace on 2016-08-24T17:35:05Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertacao-Natalia_Flora_de_Lima.pdf: 2000980 bytes, checksum: 107f0691d21b9d94e253d08f06a4fbdd (MD5) Previous issue date: 2011-08-29 / Facepe / Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de generalização da rede neural artificial (RNA). O processo de otimização automática das arquiteturas e pesos de uma rede neural vem recebendo grande atenção na área de aprendizado supervisionado, principalmente em problemas de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu, Evolução Diferencial, Recozimento simulado que comumente são empregados no treinamento de redes neurais podemos citar abordagens populacionais como a otimização por colônia de formigas, otimização por colônia de abelhas e otimização por enxame de partículas que vêm sendo largamente utilizadas nesta tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na calibração dos pesos das conexões. Nesta abordagem os algoritmos são executados de forma alternada e por um número definido de vezes. Ainda no processo de ajuste dos pesos de uma rede neural MLP foram realizados experimentos com enxame de partículas heterogêneos, que nada mais é que a junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos com os enxames homogêneos foram utilizadas sete bases de dados para problemas de classificação de padrões, são elas: câncer, diabetes, coração, vidros, cavalos, soja e tireóide. Para os experimentos com enxames heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração. O desempenho dos algoritmos foi medido pela média do erro percentual de classificação. Algoritmos da literatura são também considerados. Os resultados mostraram que os algoritmos investigados neste trabalho obtiveram melhor acurácia de classificação quando comparados com os algoritmos da literatura mencionados neste trabalho. / This research presents two new algorithms, PSO-FPSO e FPSO-FPSO, that can be used in feed-forward MLP (Multi Layer Perceptron) neural networks for global optimization. The purpose of these algorithms is to optimize architectures and synaptic weight, at same time, to improve the capacity of generalization from Artificial Neural Network (ANN). The automatic optimization process of neural network’s architectures and weights has received much attention in supervised learning, mainly in pattern classification problems. Besides the Genetic Algorithms, Tabu Search, Differential Evolution, Simulated Annealing that are commonly used in the training of neural networks we can mentioned population approaches such Ant Colony Optimization, Bee Colony Optimization and Particle Swarm Optimization that have been widely used this task. The methodology applied in this research reports the use of two PSO algorithms, used in architecture optimization and connection weight adjust. In this approach the algorithms are performed alternately and by predefined number of times. Still in the process of adjusting the weights of a MLP neural network experiments were performed with swarm of heterogeneous particles, which is nothing more than the joining of two or more different PSOs. To validate the experiments with homogeneous clusters were used seven databases for pattern classification problems, they are: cancer, diabetes, heart, glasses, horses, soy and thyroid. For the experiments with heterogeneous clusters were used three bases, namely cancer, diabetes and heart. The performance of the algorithms was measured by the average percentage of misclassification, literature algorithms are also considered. The results showed that the algorithms investigated in this research had better accuracy rating compared with some published algorithms.
150

Uma hiper-heurística híbrida para a otimização de algorítmos

MIRANDA, Pericles Barbosa Cunha de 22 August 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-05-04T18:13:43Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Teste - Péricles Miranda.pdf: 1959669 bytes, checksum: 8b0b1e3f94dd3295bce6153865564a12 (MD5) / Made available in DSpace on 2017-05-04T18:13:43Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Teste - Péricles Miranda.pdf: 1959669 bytes, checksum: 8b0b1e3f94dd3295bce6153865564a12 (MD5) Previous issue date: 2016-08-22 / A escolha de algoritmos ou heurísticas para a resolução de um dado problema é uma tarefa desafiadora devido à variedade de possíveis escolhas de variações/configurações de algoritmos e a falta de auxílio em como escolhê-las ou combiná-las. Por exemplo, o desempenho de algoritmo de otimização depende da escolha dos seus operadores de busca e do ajuste adequado de seus hiper-parâmetros, cada um deles com muitas possibilidades de opções a serem escolhidas. Por este motivo, existe um interesse de pesquisa crescente na automatização da otimização de algoritmos de modo a tornar esta tarefa mais independente da interação humana. Diferentes abordagens têm lidado com a tarefa de ajuste de algoritmos como sendo outro problema de (meta)otimização. Estas abordagens são comumente chamadas de hiper-heurísticas, onde cada solução do espaço de busca, neste caso, é um possível algoritmo avaliado em um dado problema. Inicialmente, hiper-heurísticas foram aplicadas na seleção de valores de hiper-parâmetros em um espaço de busca pré-definido e limitado. No entanto, recentemente, hiper-heurísticas têm sido desenvolvidas para gerar algoritmos a partir de componentes e funções especificados. Hiperheurísticas de geração são consideradas mais flexíveis que as de seleção devido à sua capacidade de criar algoritmos novos e personalizados para um dado problema. As hiper-heurísticas têm sido largamente utilizadas na otimização de meta-heurísticas. No entanto, o processo de busca torna-se bastante custoso, pois a avaliação das soluções trata-se da execução do algoritmo no problema de entrada. Neste trabalho, uma nova hiper-heurística foi desenvolvida para a otimização de algoritmos considerando um dado problema. Esta solução visa prover algoritmos otimizados que sejam adequados para o problema dado e reduzir o custo computacional do processo de geração significativamente quando comparado ao de outras hiper-heurísticas. A hiper-heurística proposta combina uma abordagem de seleção de algoritmos com uma hiper-heurística de geração. A hiperheurística de geração é responsável por criar uma base de conhecimento, que contém algoritmos que foram gerados para um conjunto de problemas. Uma vez que esta base de conhecimento esteja disponível, ela é usada como fonte de algoritmos a serem recomendados pela abordagem de seleção de algoritmos. A ideia é reusar algoritmos previamente construídos pela hiper-heurística de geração em problemas similares. Vale salientar que a criação de hiper-heurísticas visando reduzir o custo de geração de algoritmos sem comprometer a qualidade destes algoritmos não foi estudada na literatura. Além disso, hiper-heurísticas híbridas que combinam de abordagens de seleção de algoritmos e hiper-heurísticas de geração para a otimização de algoritmos, proposta nesta tese, é novidade. Para avaliar o algoritmo proposto, foi considerada como estudo de caso a otimização do algoritmo baseado em enxames (PSO). Nos experimentos realizados, foram considerados 32 problemas de otimização. O algoritmo proposto foi avaliado quanto à sua capacidade de recomendar bons algoritmos para problemas de entrada, se estes algoritmos atingem resultados competitivos frente à literatura. Além disso, o sistema foi avaliado quanto à sua precisão na recomendação, ou seja, se o algoritmo recomendado seria, de fato, o melhor a ser selecionado. Os resultados mostraram que a hiper-heurística proposta é capaz de recomendar algoritmos úteis para os problemas de entrada e de forma eficiente. Adicionalmente, os algoritmos recomendados atingiram resultados competitivos quando comparados com algoritmos estado da arte e a recomendação dos algoritmos atingiu um alto percentual de precisão. / Designing an algorithm or heuristic to solve a given problem is a challenging task due to the variety of possible design choices and the lack of clear guidelines on how to choose and/or combine them. For instance, the performance of an optimization algorithm depends on the designofitssearchoperatorsaswellasanadequatesettingofspecifichyper-parameters,eachof them with many possible options to choose from. Because of that, there is a growing research interest in automating the design of algorithms by exploring mainly optimization and machine learningapproaches,aimingtomakethealgorithmdesignprocessmoreindependentfromhuman interaction. Different approaches have dealt with the task of optimizing algorithms as another (meta)optimization problem. These approaches are commonly called hyper-heuristics, where each solution of the search space is a possible algorithm. Initially, hyper-heuristics were applied for the selection of parameters in a predefined and limited search space. Nonetheless, recently, generation hyper-heuristics have been developed to generate algorithms from a set of specified components and functions. Generation hyper-heuristics are considered more flexible than the selection ones due to its capacity to create new and customized algorithms for a given problem. Hyper-heuristics have been widely used for the optimization of meta-heuristics. However, the search process becomes expensive because the evaluation of each solution depends on the execution of an algorithm in a problem. In this work, a novel hyper-heuristic was developed to optimize algorithms considering a given problem. The proposed approach aims to provide optimizedalgorithmsfortheinputproblemandreducethecomputationalcostoftheoptimization process significantly when compared to other hyper-heuristics. The proposed hyper-heuristics combines an automated algorithm selection method with a generation hyper-heuristic. The generation hyper-heuristic is responsible for the creation of the knowledge base, which contains previously built algorithms for a set of problems. Once the knowledge base is available, it is used as a source of algorithms to be recommended by the automated algorithm selection method. The idea is to reuse the algorithms already built by the generation hyper-heuristic on similar problems. It is worth mentioning that the creation of hyper-heuristics aiming to reduce the cost of the algorithm generation without harming the quality of these algorithms were not studied yet. Besides, hybrid hyper-heuristics which combine an algorithm selection approach with a generation hyper-heuristic for the algorithm optimization, proposed in this thesis, are a novelty. To evaluate the proposed algorithm, it was considered as case study the optimization of the Particle Swarm Optimization algorithm (PSO). In our experiments, we considered 32 optimizationproblems.Theproposedsystemwasevaluatedregardingitscapacitytorecommend adequate algorithms for an input problem, the quality of the recommended algorithms, and, finally, regarding its accuracy to recommend algorithms. The results showed that the proposed system recommends useful algorithms for the input problem. Besides, the algorithms achieved competitive results when compared to state-of-the-art algorithms, and also, the system presented a high percentage of accuracy in the recommendation.

Page generated in 0.1407 seconds