• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ON THE POTENTIAL OF LARGE EDDY SIMULATION TO SIMULATE CYCLONE SEPARATORS

Hanafy Shalaby, Hemdan 02 February 2007 (has links) (PDF)
This study was concerned with the most common reverse flow type of cyclones where the flow enters the cyclone through a tangential inlet and leaves via an axial outlet pipe at the top of the cyclone. Numerical computations of two different cyclones were based on the so-called Stairmand cyclone. The difference in geometry between these two cyclones was basically characterized by the geometrical swirl number Sg of 3.5 and 4. Turbulent secondary flows inside a straight square channel have been studied numerically by using Large Eddy Simulation (LES) in order to verify the implementation process. Prandtl’s secondary motion calculated by LES shows satisfying agreement with both, Direct Numerical Simulation (DNS) and experimental results. Numerical calculations were carried out at various axial positions and at the apex cone of a gas cyclone separator. Two different NS-solvers (a commercial one, and a research code), based on a pressure correction algorithm of the SIMPLE method have been applied to predict the flow behavior. The flow was assumed as unsteady, incompressible and isothermal. A k − epsilon turbulence model has been applied first using the commercial code to investigate the gas flow. Due to the nature of cyclone flows, which exhibit highly curved streamlines and anisotropic turbulence, advanced turbulence models such as RSM (Reynolds Stress Model) and LES (Large Eddy Simulation) have been used as well. The RSM simulation was performed using the commercial package CFX4.4, while for the LES calculations the research code MISTRAL/PartFlow-3D code developed in our multiphase research group has been applied utilizing the Smagorinsky model. It was found that the k − epsilon model cannot predict flow phenomena inside the cyclone properly due to the strong curvature of the streamlines. The RSM results are comparable with LES results in the area of the apex cone plane. However, the application of the LES reveals qualitative agreement with the experimental data, but requires higher computer capacity and longer running times than RSM. These calculations of the continuous phase flow were the basis for modeling the behavior of the solid particles in the cyclone separator. Particle trajectories, pressure drop and the cyclone separation efficiency have been studied in some detail. This thesis is organized into five chapters. After an introduction and overview, chapter 2 deals with continuous phase flow turbulence modeling including the governing equations. The emphasis will be based on LES modelling. Furthermore, the disperse phase motion is treated in chapter 3. In chapter 4, the validation process of LES implementation with channel flow is presented. Moreover, prediction profiles of the gas flow are presented and discussed. In addition, disperse phase flow results are presented and discussed such as particle trajectories; pressure drop and cyclone separation efficiency are also discussed. Chapter 5 summarizes and concludes the thesis.
12

Optische Beobachtung von oberflächengebundenen und frei beweglichen Nanopartikeln

Finder, Christiane. Unknown Date (has links) (PDF)
Essen, Universiẗat, Diss., 2005--Duisburg.
13

Microfluidic Velocimetry for Investigating Molecular Transport and Cell Migration

Brian H Jun (11178678) 12 August 2021 (has links)
Understanding the dynamics of micro- and nanometer-sized objects like molecules, particles, and living cells in biological systems and biomaterials has become a key component in biomedical research. Consequently, significant progress has been made for the development of imaging platforms, fluorescent probes, and computational tools to visualize and quantify biological processes at different length and time scales. However, despite such advances, achieving a reliable measurement accuracy on the dynamic behavior of these microscopic vehicles in diverse biological contexts is challenging. Subsequently, the motivation behind this dissertation is to develop new robust microfluidic velocimetry techniques to investigate molecular transport and cell migration within an in-vitro microfluidic platform.
14

ON THE POTENTIAL OF LARGE EDDY SIMULATION TO SIMULATE CYCLONE SEPARATORS

Hanafy Shalaby, Hemdan 24 January 2007 (has links)
This study was concerned with the most common reverse flow type of cyclones where the flow enters the cyclone through a tangential inlet and leaves via an axial outlet pipe at the top of the cyclone. Numerical computations of two different cyclones were based on the so-called Stairmand cyclone. The difference in geometry between these two cyclones was basically characterized by the geometrical swirl number Sg of 3.5 and 4. Turbulent secondary flows inside a straight square channel have been studied numerically by using Large Eddy Simulation (LES) in order to verify the implementation process. Prandtl’s secondary motion calculated by LES shows satisfying agreement with both, Direct Numerical Simulation (DNS) and experimental results. Numerical calculations were carried out at various axial positions and at the apex cone of a gas cyclone separator. Two different NS-solvers (a commercial one, and a research code), based on a pressure correction algorithm of the SIMPLE method have been applied to predict the flow behavior. The flow was assumed as unsteady, incompressible and isothermal. A k − epsilon turbulence model has been applied first using the commercial code to investigate the gas flow. Due to the nature of cyclone flows, which exhibit highly curved streamlines and anisotropic turbulence, advanced turbulence models such as RSM (Reynolds Stress Model) and LES (Large Eddy Simulation) have been used as well. The RSM simulation was performed using the commercial package CFX4.4, while for the LES calculations the research code MISTRAL/PartFlow-3D code developed in our multiphase research group has been applied utilizing the Smagorinsky model. It was found that the k − epsilon model cannot predict flow phenomena inside the cyclone properly due to the strong curvature of the streamlines. The RSM results are comparable with LES results in the area of the apex cone plane. However, the application of the LES reveals qualitative agreement with the experimental data, but requires higher computer capacity and longer running times than RSM. These calculations of the continuous phase flow were the basis for modeling the behavior of the solid particles in the cyclone separator. Particle trajectories, pressure drop and the cyclone separation efficiency have been studied in some detail. This thesis is organized into five chapters. After an introduction and overview, chapter 2 deals with continuous phase flow turbulence modeling including the governing equations. The emphasis will be based on LES modelling. Furthermore, the disperse phase motion is treated in chapter 3. In chapter 4, the validation process of LES implementation with channel flow is presented. Moreover, prediction profiles of the gas flow are presented and discussed. In addition, disperse phase flow results are presented and discussed such as particle trajectories; pressure drop and cyclone separation efficiency are also discussed. Chapter 5 summarizes and concludes the thesis.
15

A Hybrid Dynamically Adaptive, Super-Spatio Temporal Resolution Digital Particle Image Velocimetry for Multi-Phase Flows

Abiven, Claude 16 September 2002 (has links)
A unique, super spatio-temporal resolution Digital Particle Image Velocimetry (DPIV) system with capability of resolving velocities in a multi-phase flow field, using a very sophisticated novel Dynamically Adaptive Hybrid velocity evaluation algorithm has been developed The unique methodology of this powerful system is presented, its specific distinctions are enlightened, confirming its flexibility, and its superior performance is established by comparing it to the most established best DPIV software implementations currently available. Taking advantage of the most recent advances in imaging technology coupled with state of the art image processing tools, high-performing validation schemes including neural networks, as well as a hybrid digital particle tracking velocimeter (DPTV), the foundation for a unique system was developed. The presented software enables one to effectively resolve tremendously demanding flow-fields. The resolution of challenging test cases including high speed cavitating underwater projectiles as well as high pressure spray demonstrate the power of the developed device. / Master of Science
16

Subpixel Resolution Schemes for Multiphase Flows

Brady, Michael Richard 12 January 2007 (has links)
This effort explores novel sub-resolution particle center estimation algorithms for Digital Particle Tracking Velocimetry (DPIV). The errors of these new methods were classified through Monte-Carlo simulations. These schemes provide direct measurements of the apparent particle image diameter and the subpixel position. The new methods significantly reduce the bias error due to pixel discretization, thus reducing the total error in the position and sizing measurement compared to the classic three point and least squares Gaussian estimators. In addition, the accuracy of the least-squares fits were essentially independent of the true particle diameter and significantly reduced the particle position error compared with current estimation schemes. The results of the Monte Carlo simulations were validated in a high pressure spray atomization experiment. / Master of Science
17

Experimental study of turbulent flow with dispersed rod-like particles through optical measurements

Abbasi Hoseini, Afshin January 2014 (has links)
The knowledge of the behavior of non-spherical particles suspended in turbulent flows covers a wide range of applications in engineering and science. Dispersed two-phase flows and turbulence are the most challenging subjects in engineering, and when combined it gives rise to more complexities as the result of the inherent stochastic nature of the turbulence of the carrier-phase together with the random distribution of the dispersed phase. Moreover, for anisotropic particles the coupling between the translation and rotation of particle increases the complication. Because of the practical importance of prolate particleladen turbulent flows, the plenty of numerical and experimental works have been conducted to study such suspensions. Numerical approaches have given valuable insight of turbulent suspension flows, although the computation has been only carried out at the macro scale and models, not including flow distortion around the particle, comprise the detail of the flow in the order of a particle size. In addition, the model of the forces imposed on the particle by the fluid and mass point treatment are strictly valid for infinitely small particle having size less than all scales of the fluid turbulence. Fully resolved solution at the scale of the dispersed phase in turbulent flows for high Reynolds number has been recently performed but is still a challenge. On the other hand, the presence of particle as the dispersed phase makes experimental measurements much more complicated than those with single phase as a result of particles interference. The area of considerable difficulty with this type of experiments is the measurement of the fluid-phase velocity remarkably close to the particle surface. Generally, experimental researches have been concentrated on measuring the mean velocity and Reynolds stresses of the carrier-phase, and the mean velocity, fluctuations, orientation and accumulation of the non-spherical particles. Higher-order quantities, including Lagrangian particle velocity correlations, the carrier-phase turbulence modulation, and two-particle and particlefluid velocity correlations are also of interest. It has been found that the rotational and translational movements of the fibershaped particle depend on the nature of carrier-phase field and fiber characteristics such as aspect ratio, fiber Stokes number, fiber Reynolds number, and the ratio of fiber to flow length scale. With the development of PIV (Particle Image Velocimetry) and PTV (Particle Tracking Velocimetry) techniques, it has been appeared that combined PIV/PTV will be the best available choice for the experimental study of dispersed two-phase flows. The purpose of combined PIV/PTV measurement of two-phase systems is simultaneous measurements of fluid and suspended objects, where the PIV measurement of the fluid phase are combined with PTV measurement of the dispersed phase. The objective of this doctoral thesis is to study the behavior of rod-like particles suspended in wall-bounded turbulent flow through simultaneous PIV/PTV measurements of the velocity of the flow field and particle motion. As a representative of rod-like particles, I have employed cellulose acetate fibers with the length to diameter ratio (aspect ratio) larger than one. Here, It has been considered only dilute suspensions with no flocculation; thus fiber-fiber interaction is negligible. The measurements have been conducted within the parallel planes (2D view) illuminated by laser in the streamwise direction in thin film suspension flowing on the water table setup at Linné FLOW Centre, KTH Mechanics Lab. It is shown that this setup is a well-behaved experimental model of half channel flows often used in Direct Numerical Simulation (DNS) investigations. Therefore, the experimental results are comparable to their DNS counterpart where it is convenient. A single camera PIV technique has been used to measure flowing suspension. Therefore, it has been needed to preprocess images using a spatial median filter to separate images of two phases, tracer particles as representative of fluid and fibers suspended. The well-known PIV processing algorithms have been applied to the phase of fluid. I have also introduced a novel algorithm to recognize and match fibers in consecutive images to track fibers and estimate their velocity. It is not feasible to study all relevant aspects of particle-laden turbulent flows in a single study. In this study, I present the statistics of the rotational and translational motion of fiber-like particles and the surrounding fluid velocity. To the author’s knowledge, remarkably little experimental work has been published to date on simultaneous measurement of fiber motion and turbulence field in a turbulent fiber suspension flow to reveal dynamics of fibers in this regime. Therefore, the results of this work will be profitable in better understanding of such multiphase flows. The statistical analysis of the translational motion of fibers shows that the size of fiber is a significant factor for the dynamical behavior of the fiber near the wall. It has been observed that, in the region near the wall, the probability of presence of the long fibers is high in both the high-speed and low-speed streaks of flow, and the mean velocity of fibers almost conforms to the mean velocity of flow; whereas the short fibers are mostly present in the low-speed areas, and the fiber mean velocity obey the dominant flow velocity in these areas. In the far-wall regions, the translation of fibers is practically unaffected by the aspect ratio, whereas it depends crucially on the wall-normal distance. Moreover, it was found that in the case of long fibers near the wall, the low speed fibers mostly are orientated in streamwise direction. On the other hand, there is no preferential orientation for fast long fibers. Although wall-normal velocities were not measured in this study, it is hypothesized that this behavior is a result of fibers being affected by the sweep and ejection events known to occur in wall-bounded turbulent flow. The fast fibers are in sweep environment and comes from the upper layer. The low speed fibers are into ejection areas in the vicinity of the wall, and the wall has a stabilizing effect on them. The short fibers are still oriented mostly in streamwise direction for a certain range of low velocity. Furthermore, since a considerable change of the fiber behavior is observed in a certain ratio of the fiber length to the fiber distance from the solid wall, it is supposed that this ratio is also a prominent parameter for the behavior of fiber near the wall. The results presented are in terms of viscous wall units wherever are denoted by superscript “+”.
18

Study Of Shear In Dry Granular Flows Through Vertical Channels

Moka, Sudheshna 01 1900 (has links) (PDF)
No description available.
19

Volumetric Particle Velocimetry for Microscale Flows

January 2011 (has links)
abstract: Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements to improve microchannel design and characterize existing devices. Methods such as micro particle imaging velocimetry (microPIV) and micro particle tracking velocimetry (microPTV) are mature and established methods for characterization of steady 2D flow fields. Increasingly complex microdevices require techniques that measure unsteady and/or three dimensional velocity fields. This dissertation presents a method for three-dimensional velocimetry of unsteady microflows based on spinning disk confocal microscopy and depth scanning of a microvolume. High-speed 2D unsteady velocity fields are resolved by acquiring images of particle motion using a high-speed CMOS camera and confocal microscope. The confocal microscope spatially filters out of focus light using a rotating disk of pinholes placed in the imaging path, improving the ability of the system to resolve unsteady microPIV measurements by improving the image and correlation signal to noise ratio. For 3D3C measurements, a piezo-actuated objective positioner quickly scans the depth of the microvolume and collects 2D image slices, which are stacked into 3D images. Super resolution microPIV interrogates these 3D images using microPIV as a predictor field for tracking individual particles with microPTV. The 3D3C diagnostic is demonstrated by measuring a pressure driven flow in a three-dimensional expanding microchannel. The experimental velocimetry data acquired at 30 Hz with instantaneous spatial resolution of 4.5 by 4.5 by 4.5 microns agrees well with a computational model of the flow field. The technique allows for isosurface visualization of time resolved 3D3C particle motion and high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. Several applications are investigated, including 3D quantitative fluorescence imaging of isotachophoresis plugs advecting through a microchannel and the dynamics of reaction induced colloidal crystal deposition. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2011
20

Uncertainty Quantification in Particle Image Velocimetry

Sayantan Bhattacharya (7649012) 03 December 2019 (has links)
<div>Particle Image Velocimetry (PIV) is a non-invasive measurement technique which resolves the flow velocity by taking instantaneous snapshots of tracer particle motion in the flow and uses digital image cross-correlation to estimate the particle shift up to subpixel accuracy. The measurement chain incorporates numerous sets of parameters, such as the particle displacements, the particle image size, the flow shear rate, the out-of-plane motion for planar PIV and image noise to name a few, and these parameters are interrelated and influence the final velocity estimate in a complicated way. In the last few decades, PIV has become widely popular by virtue of developments in both the hardware capabilities and correlation algorithms, especially with the scope of 3-component (3C) and 3-dimensional (3D) velocity measurements using stereo-PIV and tomographic-PIV techniques, respectively. The velocity field measurement not only leads to other quantities of interest such as Pressure, Reynold stresses, vorticity or even diffusion coefficient, but also provides a reference field for validating numerical simulations of complex flows. However, such a comparison with CFD or applicability of the measurement to industrial design requires one to quantify the uncertainty in the PIV estimated velocity field. Even though the PIV community had a strong impetus in minimizing the measurement error over the years, the problem of uncertainty estimation in local instantaneous PIV velocity vectors have been rather unnoticed. A typical norm had been to assign an uncertainty of 0.1 pixels for the whole field irrespective of local flow features and any variation in measurement noise. The first article on this subject was published in 2012 and since then there has been a concentrated effort to address this gap. The current dissertation is motivated by such a requirement and aims to compare the existing 2D PIV uncertainty methods, propose a new method to directly estimate the planar PIV uncertainty from the correlation plane and subsequently propose the first comprehensive methods to quantify the measurement uncertainty in stereo-PIV and 3D Particle Tracking Velocimetry (PTV) measurements.</div><div>The uncertainty quantification in a PIV measurement is, however, non-trivial due to the presence of multitude of error sources and their non-linear coupling through the measurement chain transfer function. In addition, the advanced algorithms apply iterative correction process to minimize the residual which increases the complexity of the process and hence, a simple data-reduction equation for uncertainty propagation does not exist. Furthermore, the calibration or a reconstruction process in a stereo or volumetric measurement makes the uncertainty estimation more challenging. Thus, current uncertainty quantification methods develop a-posterior models utilizing the evaluated displacement information and combine it with either image information, correlation plane information or even calibration “disparity map” information to find the desired uncertainties in the velocity estimates.</div><div><br></div>

Page generated in 0.0731 seconds