• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 19
  • 19
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward a better understanding of new particle formation

Pettibone, Alicia J 01 December 2009 (has links)
The creation of new atmospheric particles via nucleation is an important source of particles, and may influence climate by altering the aerosol size distribution. The objectives of my dissertation research were to better understand the process by which new particles are created (homogeneous nucleation), and how these particles are modified throughout their lifetime in the atmosphere. The approach combined field-measurements and observations with advanced instrumentation development and extensive data analysis. In the laboratory, a Dry-Ambient Aerosol Size Spectrometer (DAASS) was constructed. The DAASS is an automated combination of aerosol sizing instruments and supporting equipment that measures aerosol size distributions from 10.9 nm to 10 µm at both ambient and dry relative humidities and was deployed during the MILAGRO field campaign. The design and construction of a Differential Mobility Analyzer from parts was also completed in order to provide the capability to perform Tandem DMA (or TDMA) measurements. New particle formation events, occurring in both rural (Midwest United States) and urban (Mexico City) locations were analyzed. In the Midwest, the temporal pattern, frequency, associated meteorology and contributing factors were quantified for the first time in this location. The urban observations were conducted in Mexico City, Mexico, as part of an international field campaign known as MILAGRO (Megacity Initiative: Local and Global Research Observations 2006). It was determined that new particle formation in Mexico City occurs following periods of decreased pre-existing aerosol surface area. These sharp decreases in pre-existing aerosol surface area are tied to the rapid ventilation of the Mexico City basin that occurs in the early afternoon as a result of its unique geographical setting in a mountain basin. Number-based emission factors representative of Mexico City were determined using a method of signal peak identification in collocated SMPS and CO2 measurements. The emission factor as a function of time of day, day of week, and wind direction were examined. The overall emission factor is size resolved, and comparisons to other size resolved emission factors determined in other locations (such as Los Angeles) were performed.
2

Poly(Methyl Methacrylate) Sterically Stabilized by Silicone

Osterroth, Andrea 03 1900 (has links)
<p> Nonaqueous poly(methyl methacrylate) latices were prepared by nonaqueous dispersion polymerization of poly(methyl methacrylate) in heptane in the presence of either trimethylsilyl terminated or vinyl terminated polydimethylsiloxane stabilizer. Poly(methyl methacrylate) particles stabilized by vinyl terminated polydimethylsiloxane showed smaller particle sizes than did those stabilized by trimethylsilyl terminated polydimethylsiloxane. Diameters of the various latex preparations ranged from 1.4 to 0.8 μm and silicone content was around 2 mole percent in each case. Differences between the two types of latex were explained in terms of the nucleation mechanism operating during the preparation of the latices and in terms of the type of attachment of the stabilizer chain to the poly(methyl methacrylate) core.</p> <p> The effect of the silicone concentration present during particle formation was investigated. Vinyl terminated polydimethylsiloxane stabilized latex gave better stabilized particles than did methyl terminated polydimethylsiloxane stabilized latex. The results of varying the concentration and type of initiator were consistent with the conclusions about differences in nucleation and grafting mechanisms.</p> <p> The stability of polydimethylsiloxane stabilized poly(methyl methacrylate) particles was investigated in n-heptane. Acidified montmorillonite clay was determined as the optimum catalyst for this latex system. Flocculation set in at 70% of the original silicone content when the siloxane on the particle surface was degraded with montmorillonite clay in a good solvent. Flocculation was irreversible and occurred abruptly. The point of flocculation was reproducible and the rate of flocculation was identical for two different types of silicone stabilized poly(methyl methacrylate) latex.</p> / Thesis / Master of Science (MSc)
3

Nucleation in emulsion polymerization : steps towards a non-micellar nucleation theory

Nazaran, Pantea January 2008 (has links)
For more than 70 years, understanding of the mechanism of particle nucleation in emulsion polymerization has been one of the most challenging issues in heterophase polymerization research. Within this work a comprehensive experimental study of particle nucleation in emulsion polymerization of styrene at 70 °C and variety of conditions has been performed. To follow the onset of nucleation, on-line conductivity measurements were applied. This technique is highly sensitive to the mobility of conducting species and hence, it can be employed to follow aggregation processes leading to particle formation. On the other hand, by recording the optical transmission (turbidity) of the reaction mixture particle growth was followed. Complementary to the on-line investigations, off-line characterizations of the particle morphology and the molecular weight have been performed. The aim was to achieve a better insight in the processes taking place after starting the reaction via particle nucleation until formation of colloidally stable latex particles. With this experimental protocol the initial period of styrene emulsion polymerization in the absence as well as in the presence of various surfactants (concentrations above and below the critical micellization concentration) and also in the presence of seed particles has been investigated. Ionic and non-ionic initiators (hydrophilic and hydrophobic types) have been applied to start the polymerizations. Following the above algorithm, experimental evidence has been obtained showing the possibility of performing surfactant-free emulsion polymerization of styrene with oil-soluble initiators. The duration of the pre-nucleation period (that is the time between starting the polymerization and nucleation) can be precisely adjusted with the initiator hydrophobicity, the equilibration time of styrene in water, and the surfactant concentration. Spontaneous emulsification of monomer in water, as soon as both phases are brought into contact, is a key factor to explain the experimental results. The equilibration time of monomer in water as well as the type and concentration of other materials in water (surfactants, seed particles, etc.) control the formation rate and the size of the emulsified droplets and thus, have a strong influence on the particle nucleation and the particle morphology. One of the main tasks was to investigate the effect of surfactant molecules and especially micelles on the nucleation mechanism. Experimental results revealed that in the presence of emulsifier micelles the conductivity pattern does not change essentially. This means that the presence of emulsifiers does not change the mechanism of particle formation qualitatively. However, surfactants assist in the nucleation process as they lower the activation free energy of particle formation. Contrary, seed particles influence particle nucleation, substantially. In the presence of seed particles above a critical volume fraction the formation of new particles can be suppressed. However, micelles and seed particles as absorbers exhibit a common behavior under conditions where monomer equilibration is not allowed. Results prove that the nucleation mechanism comprises the initiation of water soluble oligomers in the aqueous phase followed by their aggregation. The process is heterogeneous in nature due to the presence of monomer droplets. / Polymere dominieren unsere Welt. Die natürlich vorkommenden Polymeren, wie Proteine, Polynukleotide, und Polysaccharide, sind nötig um das Leben zu erhalten. Ebenso wichtig sind die kommerziell erhältlichen Makromoleküle. Beides sind Bausteine, um Materialien zu konstruieren, welche man in beiden Welten finden kann- der natürlichen und der „Mensch-gemachten“ Welt. Unter den verschiedenen Polymerisationsmethoden hat sich die Emulsions-polymerisation zu einem weit verbreiteten Prozess entwickelt. Die Emulsionspolymerisation ist ein einzigartiger Polymerisationsprozess, bei dem ein Monomer oder ein Gemisch von Monomeren in einem wässrigen Medium polymerisiert wird. Dabei entsteht eine Dispersion von Polymeren, welche auch als Latex bezeichnet wird. Derzeit werden mehrere Millionen Tonnen von synthetischen Latices mit Hilfe der Emulsionspolymerisation hergestellt. Diese finden zum Beispiel Verwendung als synthetische Gummi, Latexschaum, Latexfarben, Papierbeschichtungen und Klebstoffen. Außerdem findet man sie auch bei Spezialanwendungen, wie Diagnosetests, Pharmakotherapien und chromatographischen Trennmethoden. Trotz der Vielzahl von industriellen Anwendungen, sollten all jenen, die sich mit Emulsionspolymerisation beschäftigen, den wissenschaftlichen und technologischen Herausforderungen, die sich stellen, bewusst sein. Die wichtigsten Fragen beim Umgang mit der Emulsionspolymerisation beinhalten das Verständnis des Prozesses der Partikelbildung und des Partikelwachstums. Die vorliegende Dissertation beschäftigt sich mit der Frage der Keimbildungs-etappe in Emulsionspolymerisationen. Die Untersuchungen wurden mit Hilfe eines on-line Leitfähigkeitsmessverfahren sowie einigen off-line analytischen Experimenten durchgeführt. Basierend auf den klaren experimentellen Daten, wurde ein besserer Einblick in die tatsächlichen Zustände des Polymerisationssystems, von der Zeit der neu geboren Kerne bis zu endgültig stabilisierten Teilchen, gewonnen.
4

High Throughput Block Copolymer Nanoparticle Assembly Methods

Souva, Matthew Scott January 2017 (has links)
No description available.
5

Emulgatorfreie Emulsionspolymerisation : Monomerlösungszustand und Teilchenbildung / Emulsifier-free emulsion polymerization : monomer solution state and particle formation

Kozempel, Steffen January 2005 (has links)
Polymere sind zweifelsohne der Werkstoff in unserer Zeit. Ein bedeutender Anteil der heute industriell produzierten Polymere wird durch Emulsionspolymerisation hergestellt. Obwohl die Emulsionspolymerisation breite Anwendung findet, sind die involvierten Mechanismen von Teilchenbildung und -wachstum noch heute Gegenstand heftiger Kontroversen.<br> Ein Spezialfall der Emulsionspolymerisation ist die emulgatorfreie Emulsionspolymerisation. Hierbei handelt es sich um ein scheinbar einfacheres System der Emulsionspolymerisation, weil diese Methode ohne Zusatz von Emulgatoren auskommt.<br><br> Die Teilchenbildung ist ein fundamentaler Vorgang im Verlauf der Emulsionspolymerisation, da sie zur Ausbildung der polymeren Latexphase führt. Detaillierte Kenntnisse zum Mechanismus der Nukleierung ermöglichen eine bessere Kontrolle des Reaktionsverlaufes und damit der Eigenschaften des Endproduktes der Emulsionspolymerisation, dem Polymer-Latex.<br> Wie bereits vorangegangene Arbeiten auf dem Gebiet der emulgatorfreien Emulsionspolymerisation von Styrol sowie Methylmethacrylat und Vinylacetat zeigen konnten, verläuft die Teilchenbildung in diesen Systemen über den Mechanismus der aggregativen Nukleierung. Im Zusammenhang mit den Ergebnissen der genannten Arbeiten tauchte dabei immer wieder ein interessanter Effekt im Bereich der Partikelnukleierung auf. Dieses als JUMBO-Effekt bezeichnete Phänomen zeigte sich reproduzierbar in einem Anstieg der Transmission im Bereich der Teilchenbildung von emulgatorfreien Emulsionspolymerisationen von Styrol, MMA und VAc. Nach der Initiierung der Polymerisation in einer wässrigen Monomerlösung durch Kaliumperoxodisulfat steigt die Durchlässigkeit bei 546 nm auf über 100 % an. Für diese „Abnahme der optischen Dichte“ wurden verschiedene Erklärungsmöglichkeiten vorgeschlagen, jedoch blieb ein Nachweis der Ursache für den JUMBO-Effekt bisher aus. Dieser Mangel an Aufklärung eines offenbar grundlegenden Phänomens in der emulgatorfreien Emulsionspolymerisation bildet den „Nukleus“ für die vorlie¬gende Arbeit.<br><br> Durch die vorliegende Dissertation konnte das Verständnis für Phänomene der Teilchenbildung in der emulgatorfreien Emulsionspolymerisation von Styrol mit KPS erweitert werden. In diesem Rahmen wurde das Online-Monitoring des Polymerisationsvorganges verbessert und um verschiedene Methoden erweitert:<br> Zur simultanen Erfassung von Trübungsdaten bei verschiedenen Wellenlängen konnte ein modernes Spektrometer in Kombination mit einer Lichtleitersonde in die Reaktionsapparatur integriert werden.<br><br> Es wurde ein verbesserter Algorithmus zur Datenbearbeitung für die Partikelgrößenbestimmung mittels faseroptischer dynamischer Lichtstreuung entwickelt.<br> Es wurden Online-Partikelgrößenanalysen mittels statischer Vielwinkellichtstreuung bei Polymerisationen direkt in entsprechenden Lichtstreuküvetten durchgeführt.<br><br> Diese zur Beschreibung des untersuchten Systems eingeführten Methoden sowie ein zeitlich vollständiges Monitoring des gesamten Polymerisationsverlaufes, beginnend mit der Zugabe von Monomer zu Wasser, führten zu neuen Erkenntnissen zur emulgatorfreien Emulsionspolymerisation.<br> Es wurden große Monomeraggregate, die sog. Nanotröpfchen, in wässriger Lösung (emulgatorfrei) nachgewiesen. Diese Aggregate bilden sich spontan und treten verstärkt in entgastem Wasser auf.<br><br> Die Existenz von Nanotröpfchen in Verbindung mit Trübungs- und gaschromatografischen Messungen lässt auf eine molekular gelöste „Wirkkonzentration“ von Styrol in Wasser schließen, die bedeutend geringer ist als die absolute Sättigungskonzentration.<br> Es konnten Hinweise auf eine Reaktion höherer Ordnung im System Wasser/Styrol/KPS gefunden werden.<br><br> Es konnte gezeigt werden, dass eine präzise Einstellung der Nukleierungsdauer über die Zeit der Equilibrierung von Wasser mit Styrol möglich ist.<br> Der JUMBO-Effekt, dem in dieser Arbeit ein besonderes Interesse galt, konnte in gewisser Weise entmystifiziert werden. Es konnte gezeigt werden, dass die Durchlässigkeit der Reaktionsmischung bereits beim Lösen von Styrol in Wasser durch Bildung von Styrolaggregaten abnimmt. Der darauf folgende kurzzeitige Transmissionsanstieg im Zusammenhang mit der Nukleierung erreicht dabei nicht mehr 100 % des Referenzwertes von reinem Wasser. Alle experimentellen Daten sprechen für die Nanotröpfchen als Ursache des JUMBO-Effekts.<br> Wie die Ergebnisse dieser Arbeit zeigen, ist selbst das relativ „einfache“ System der emulgatorfreien Emulsionspolymerisation komplizierter als angenommen. Die Existenz von großen Styrolaggregaten in wässriger Lösung erfordert eine neue Betrachtungsweise des Reaktionssystems, in die auch der Lösungszustand des Monomers mit einbezogen werden muss. / Polymers are doubtless the material of today. Large amounts of industrially produced polymers are made via emulsion polymerization. Although emulsion polymerization is widely used commercially, the mechanisms of particle formation and -growth involved are still intensely controversial.<br><br> A special case of the emulsion polymerization is the emulsifier-free emulsion polymerization. This apparently easier procedure is performed without addition of emulsifier.<br> Particle formation is a fundamental event in the progression of emulsion polymerization because it leads to the formation of a polymeric latex phase. Explicit knowledge concerning the mechanism of nucleation facilitates better control of the reaction process and therefore of the properties of the final polymeric latex product.<br><br> Other contributions in emulsifier-free emulsion polymerization of styrene could already proof that particle formation in the present system proceeds via aggregative nucleation. In the context of the results of these contributions, an interesting effect was always detected in the time range of particle nucleation. This so-called “JUMBO-effect” appeared highly reproducible as an increase of transmittance during nucleation period in the emulsifier-free emulsion polymerization of styrene. After initiation of the polymerization in an aqueous monomer solution with potassiumperoxodisulfate the transmittance at 546 nm increases to more than 100 %. For this “decrease in optical density” various possible explanations have been suggested, but a proof for any of them is still to be found. This lack of insight into an apparently fundamental phenomenon in emulsifier-free emulsion polymerization arises as the “nucleus” of the present thesis.<br><br> Within this work the understanding of the phenomena of particle formation in emulsifier-free emulsion polymerization of styrene with potassiumperoxodisulfate could be enhanced. In this frame the online monitoring of the polymerization process could be improved and expanded to several methods:<br><br> For the simultaneous recording of UV-spectra respectively turbidity data at various wavelengths a modern spectrometer in combination with a fibre optical probe could be integrated into the reaction vessel.<br> An improved algorithm for data treatment of particle size determination via fibre optical dynamic light scattering was developed.<br> We implemented online particle size determinations via multi angle laser light scattering directly in light scattering cuvettes.<br><br> These newly introduced methods, in combination with temporally complete monitoring of the whole polymerization progression, starting with the addition of monomer to water, lead to novel insight into emulsifier-free emulsion polymerization of styrene:<br> Big monomer aggregates, so called “nano droplets”, could be detected in an aqueous solution of styrene. These aggregates form spontaneously and appear especially in degassed water. Polymerisation as the origin of the nano droplets can be excluded.<br> In context with turbidity and gas chromatographic measurements, the existence of nano droplets leads us to conclude that there is a molecularly dissolved “effective” concentration of styrene in water which is much lower than the absolute concentration reported in the literature.<br> We could find some hints for a higher reaction order in the system water/styrene/potassiumpersulfate. The induced decomposition of the peroxodisulfate ion in the presence of styrene and ethylbenzene shows an additional reaction of the initiator with aromatic compounds besides the thermolytical cleavage.<br> Furthermore it could be shown that it is possible to precisely adjust the duration of nucleation with the solubilisation time of styrene in water. This kind of control can be useful for other applications.<br> The JUMBO-effect, which was a major topic of this thesis, could be partly de-mystified. It could be shown that the turbidity of the reaction mixture already increases during the dissolution process of styrene due to the formation of aggregates. The turbidity decrease which is depicted by the JUMBO-effect in the time range of nucleation never reaches 100 % of the reference water. An interference of the used measuring wavelength with the domain size of density fluctuations according to the theory of spinodal decomposition could not be verified. The experimental data suggest rather the nano droplets as origin of the JUMBO-effect.<br> The results of the present thesis show clearly that the relatively “simple” system of the emulsifier-free emulsion polymerisation (water/styrene/potassiumpersulfate) is more complex than expected. The existence of big styrene aggregates in aqueous solution requires a new approach of the reaction system, which also includes the solution state of the monomer.
6

Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites

Xu, Chunbao 15 August 2006 (has links)
Hydrothermal synthesis is a widely used technique for the preparation of fine particles. It can be carried out in batch or flow systems, although most studies have used batch reactors below 200 C. More recently, however, continuous hydrothermal synthesis has been employed in near- and supercritical water to obtain metal oxide particles. This technique offers tremendous promise for control of particle characteristics due to the rapidly changing properties of water with temperature and pressure in the critical region. However, the role of temperature in this process is not completely understood. Moreover, agglomeration of particles remains a problem in both batch and continuous hydrothermal techniques. This work is concerned with the use of continuous hydrothermal synthesis at near-critical and supercritical conditions to obtain iron oxide and lithium iron phosphate nanoparticles. Factors that affect size, size-distribution, and morphology of nanoparticles were investigated and the results have been used to resolve differences in the literature concerning the effect of temperature on particle size. It was shown that agglomeration can be minimized by using a protective polymer coating and this appears to be an effective method to control particle size. The continuous hydrothermal technique was also extended to materials other than metal oxides by synthesizing lithium iron phosphate. Differences in the particle sizes obtained using the batch and continuous methods were shown to be due to the different mechanisms of particle formation in the two techniques. Better particle characteristics (size, size distribution and morphology) were obtained using the continuous hydrothermal technique than using the batch hydrothermal method. Iron oxide nanoparticles were also deposited on the surface and in the pores of activated carbon pellets in a batch reactor in order to minimize agglomeration of particles. The resulting iron oxide activated carbon nanocomposites exhibited significant catalytic performance in the oxidation of propanal. Therefore, the use of supercritical water to deposit metal oxide particles on hydrophobic surfaces offers promise for carbon-supported catalyst preparation without the use of toxic or noxious solvents.
7

Design of Multi-function Polymeric Nanoparticles for Theranostic Application / Design av multifunktionella polymera nanopartiklar för teranostisk tillämpning

Yamani, Zuhoor January 2019 (has links)
Block copolymer nanoparticles (NPs) have gained great attention among researcher for various medical application mainly due to their extraordinary optical, chemical, and biological properties. The current thesis presents design of multifunctional polymeric NPs for imaging and drug delivery system (DDS) with an in-vitro study of their participation in drug release and cell viability. The NPs were synthesized using reversible addition chain fragmentation transfer (RAFT)-mediated emulsion polymerization via polymerization induce self-assembly (PISA) approach. The environment-friendly emulsion polymerization process of n-buytl acrylate (n-BA) in water is highly efficient. The process produced uniform NPs which would have control over the particle size and molecular weight of the compound. Herein we report a novel simultaneous encapsulation of camptothecin (CPT) and Nile red (NR) into poly(ethylene glycol) methyl ether methacrylate-co-N-hydroxyethyl acrylamide-b-poly n-buytlacrylate (PEGA-co-HEAA)-b-P(n-BA) during the particles formation with a small particle size of 66 nm, high conversion ~80% and encapsulation efficiency of ~50%. The In vitro drug release of the CPT from the NPs exhibited an initial burst (70-80%) within 6h. cell viability was evaluated for the NPs against RAW 264.7 cell line, which indicated the designed NPs are biocompatible and not toxic.
8

The Investigation of Secondary Particle Formation Initiated by Non-Prototypical Sources and the role of Amines in the Atmosphere

Burrell, Emily 01 August 2019 (has links)
This dissertation is a collection of works that investigate non-prototypical sources leading to new particle formation in the atmosphere. Particles play a major role in atmospheric chemistry. For example, particles are a component of smog and are commonly found in high concentrations under conditions of atmospheric inversions. In order to reconcile the difference between measured and modeled particle concentrations new mechanisms from non-prototypical sources for particle formation need to be determined. Formation of particles has frequently been modeled using classical nucleation theory (CNT). The first step in CNT is the nucleation step where molecular clusters form. In a second step, these clusters grow into particles through coagulation or condensation. First, this research aims to improve the modeling of equilibrium constants for the formation of peroxy radical-water complexes. Failure of the harmonic approximation in the partition function for describing the low frequency vibrational modes of the complexes was explored. Instead the dissociative hydrogen bond mode using a Lennard-Jones 6-3 potential and the other low frequency vibrational modes using one- and two-fold hindered rotors was modeled. It was determined that the contribution of the two-fold hindered rotors is more important than the long-range dipole-dipole potentials and of vibration-rotation coupling. In related work, the hydroperoxy radical was investigated as a non-prototypical source of particles using high level ab initio calculations. The results indicate that the addition of an amine to the dimer increased the overall stability of complex through the increased number and strength of the hydrogen bonds. When compared to prototypical systems, sulfuric acid and methane sulfonic acid, the strength of the complex was found to be similar to the peroxy radical system. Finally, carboxylic acids, formic acid and acetic acid, were investigated as a source for new particle formation using computational and experimental techniques. Using a slow flow reactor cell particle formation was enhanced by the addition of trimethylamine. High level ab initio calculations indicate like the peroxy radicals, carboxylic acids may act as a molecular cluster in particle formation
9

Nukleace kyseliny sírové a vody - laboratorní a atmosférická pozorování / Nucleation of Sulphuric Acid and Water - Laboratory and Atmospheric Observations

Škrabalová, Lenka January 2016 (has links)
1 ABSTRACT: This study is dedicated to the study of nucleation of sulphuric acid and water, which presents the key process associated with secondary aerosol formation via gas to particle conversion. We investigated the nucleation rates, new aerosol particles formation and growth dynamics of newly nucleated particles. These processes were explored in both laboratory and field experiments. In the laboratory measurements, we explored the H2SO4 - H2O nucleation rates and growth rates of newly formed particles under well-defined conditions and we also investigated the effect of experimental conditions on particle growth dynamics. Furthermore, we proposed a model, which predicts the particle growth and accounts for condensation of H2SO4, H2O and NH3. The comparison of experimental growth rates with atmospheric ones was made and resulting implications of the chemical nature of compounds involved in the early growth of nucleated particles is also presented. To investigate the atmospheric H2SO4 - H2O nucleation and new particle formation, we analysed a two-year long dataset of particle number size distributions, obtained from a urban background station in Prague Suchdol. A special attention was given to a recently reported special feature of particle growth dynamics - a particle shrinkage following previous new...
10

Spray-Dried Powders for Inhalation : Particle Formation and Formulation Concepts

Elversson, Jessica January 2005 (has links)
<p>Spray drying is a method with a high potential in the preparation of protein particles suitable for pulmonary delivery. However, surface induced denaturation of bio-molecules during atomization and subsequent drying can be substantial and it is therefore important to develop new formulation concept for concurrent encapsulation and stabilization of proteins during spray drying. Hence, with an overall objective to increase the knowledge of the formation of particulate systems for systemic administration of proteins by spray drying, the first part of this thesis, systematically investigated the particle formation by droplet size and particle size measurements. It was described how specific properties, such as the solubility and the crystallization propensity of the solute, can affect the product, e.g. the particle size, internal structures, and possibly particle density. A new method using atomic force microscopy (AFM) for the assessment of the effective particle density of individual spray-dried particles was demonstrated. In the second part, two different formulation concepts for encapsulation of protein during spray drying were developed. Both systems used non-ionic polymers for competitive adsorption and displacement of protein from the air/water interface during spray drying. The aqueous two-phase system (ATPS) of polyvinyl alcohol (PVA) and dextran, and the surface-active polymers, hydroxypropyl methylcellulose (HPMC) and triblock co-polymer (poloxamer 188) used for in situ coating, proved efficient in encapsulation of a model protein, bovine serum albumin (BSA). Inclusion of polymeric materials in a carbohydrate matrix also influenced several particle properties, such as the particle shape and the surface morphology, and was caused by changes in the chemical composition of the particle surface and possibly the surface rheology. In addition, powder performance of pharmaceutical relevance, such as dissolution and flowability, were affected.</p>

Page generated in 0.1354 seconds