• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 12
  • 11
  • 11
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Volumetric measurements of the transitional backward facing step flow

Kitzhofer, Jens 08 August 2011 (has links)
The thesis describes state of the art volumetric measurement techniques and applies a 3D measurement technique, 3D Scanning Particle Tracking Velocimetry, to the transitional backward facing step flow. The measurement technique allows the spatial and temporal analysis of coherent structures apparent at the backward facing step. The thesis focusses on the extraction and interaction of coherent flow structures like shear layers or vortical structures.
32

DEVELOPMENT OF IMAGE-BASED DENSITY DIAGNOSTICS WITH BACKGROUND-ORIENTED SCHLIEREN AND APPLICATION TO PLASMA INDUCED FLOW

Lalit Rajendran (8960978) 07 May 2021 (has links)
<p>There is growing interest in the use of nanosecond surface dielectric barrier discharge (ns-SDBD) actuators for high-speed (supersonic/hypersonic) flow control. A plasma discharge is created using a nanosecond-duration pulse of several kilovolts, and leads to a rapid heat release and a complex three-dimensional flow field. Past work has been limited to qualitative visualizations such as schlieren imaging, and detailed measurements of the induced flow are required to develop a mechanistic model of the actuator performance. </p><p><br></p><p></p><p>Background-Oriented Schlieren (BOS) is a quantitative variant of schlieren imaging and measures density gradients in a flow field by tracking the apparent distortion of a target dot pattern. The distortion is estimated by cross-correlation, and the density gradients can be integrated spatially to obtain the density field. Owing to the simple setup and ease of use, BOS has been applied widely, and is becoming the preferred density measurement technique. However, there are several unaddressed limitations with potential for improvement, especially for application to complex flow fields such as those induced by plasma actuators. </p><p></p><p>This thesis presents a series of developments aimed at improving the various aspects of the BOS measurement chain to provide an overall improvement in the accuracy, precision, spatial resolution and dynamic range. A brief summary of the contributions are: </p><p>1) a synthetic image generation methodology to perform error and uncertainty analysis for PIV/BOS experiments, </p><p>2) an uncertainty quantification methodology to report local, instantaneous, a-posteriori uncertainty bounds on the density field, by propagating displacement uncertainties through the measurement chain,</p><p>3) an improved displacement uncertainty estimation method using a meta-uncertainty framework whereby uncertainties estimated by different methods are combined based on the sensitivities to image perturbations, </p><p>4) the development of a Weighted Least Squares-based density integration methodology to reduce the sensitivity of the density estimation procedure to measurement noise.</p><p>5) a tracking-based processing algorithm to improve the accuracy, precision and spatial resolution of the measurements, </p><p>6) a theoretical model of the measurement process to demonstrate the effect of density gradients on the position uncertainty, and an uncertainty quantification methodology for tracking-based BOS,</p><p>Then the improvements to BOS are applied to perform a detailed characterization of the flow induced by a filamentary surface plasma discharge to develop a reduced-order model for the length and time scales of the induced flow. The measurements show that the induced flow consists of a hot gas kernel filled with vorticity in a vortex ring that expands and cools over time. A reduced-order model is developed to describe the induced flow and applying the model to the experimental data reveals that the vortex ring's properties govern the time scale associated with the kernel dynamics. The model predictions for the actuator-induced flow length and time scales can guide the choice of filament spacing and pulse frequencies for practical multi-pulse ns-SDBD configurations.</p>
33

The Hydrodynamic Interaction of Two Small Freely-moving Particles in a Couette Flow of a Yield Stress Fluid

Firouznia, Mohammadhossein January 2017 (has links)
No description available.
34

Hydrodynamical investigations of liquid ventilation by means of advanced optical measurement techniques

Janke, Thomas 20 August 2021 (has links)
Although liquid ventilation has been researched and studied for the last six decades, it did not achieve its expected optimal performance. Within this work, a deeper understanding of the fluid dynamics during liquid ventilation shall be gathered to extend the already available clinical knowledge about this ventilation strategy. In order to reach this goal, advanced optical flow measurement techniques are applied in different models of the human conductive airways to obtain global velocity fields, identifying prominent flow structures and to determine important dissolved oxygen transport paths. As the velocity measurements revealed, the evolving flow field is strongly dominated by secondary flow effects and is highly dependent on the local airway geometry. During the visualization experiments of the dissolved oxygen concentration fields, different transportation paths occur at inspirational and expirational flow. The initial concentration distribution can be linked to the underlying flow fields but decouples after the peak velocity phases. With higher flow rates/ tidal volumes, a more homogeneously distributed oxygen concentration can be reached.:List of Figures ....................................................................................... VII List of Tables ........................................................................................XIII Nomenclature ........................................................................................ XV 1 Introduction......................................................................................... 1 1.1 Motivation ........................................................................................1 1.2 Research objectives........................................................................... 3 1.3 Outline............................................................................................ 4 2 State of the art .................................................................................... 5 2.1 Liquid Ventilation............................................................................. 5 2.2 In vitro modeling.............................................................................. 8 2.3 Flow measurements ......................................................................... 11 2.4 Gas transport..................................................................................13 3 Flow field measurements ................................................................... 16 3.1 Hydrodynamic Model.......................................................................16 3.1.1 Lung replica ..........................................................................16 3.1.2 Flow parameter .....................................................................18 3.1.3 Limitations ...........................................................................22 3.2 Particle Tracking Velocimetry (PTV) ................................................24 3.2.1 Measurement principle ...........................................................24 3.2.2 Double-frame 2D-PTV ...........................................................25 3.2.3 Time-resolved 3D-PTV ..........................................................28 3.2.4 Phase-locked ensemble PTV ................................................... 31 3.3 Experimental set-up and measurement procedure ...............................33 3.3.1 Lung flow facility...................................................................33 3.3.2 2D-PTV configuration............................................................36 3.3.3 3D-PTV configuration............................................................36 3.4 Results & Discussion........................................................................38 3.4.1 Artificial lung........................................................................38 3.4.2 Realistic lung ........................................................................52 3.5 Conclusion ......................................................................................59 4 Oxygen transport ...............................................................................61 4.1 Hydrodynamic Model....................................................................... 61 4.1.1 Lung replica .......................................................................... 61 4.1.2 Flow parameter .....................................................................62 4.1.3 Limitations ...........................................................................65 4.2 Oxygen Sensitive Dye ......................................................................66 4.3 Experimental set-up......................................................................... 71 4.4 Results & Discussion........................................................................75 4.4.1 Constant flow rate .................................................................75 4.4.2 Oscillatory flow .....................................................................83 4.5 Conclusion ......................................................................................90 5 Summary............................................................................................ 92 6 Outlook .............................................................................................. 95 Bibliography ............................................................................................ 97 / Trotz intensiver Forschung in den letzten sechs Jahrzehnten, befindet sich die Flüssigkeitsbeatmung immernoch weit entfernt vom klinischen Alltag. Mit dieser Arbeit soll ein Beitrag geleistet werden, um das Wissen um die strömungsmechanischen Effekte während der Flüssigkeitsbeatmung zu vertiefen. Dazu werden verschiedene Modellexperimente durchgeführt, bei welchen moderne laseroptische Strömungsmessmethoden zum Einsatz kommen. Untersucht werden dabei unterschiedlich komplexe Geometrien der leitenden menschlichen Atemwege mit dem Ziel wesentliche Strömungsstrukturen, globale Geschwindigkeitsfelder und wichtige Transportwege des gelösten Sauerstoffs zu identifiziern. Die Geschwindigkeitsmessungen zeigen ein stark durch sekundäre Strömungseffekte dominiertes Geschwindigkeitsfeld, welches wesentlich von der lokalen Geometrie abhängig ist. Durch die qualitative und quantitative Erfassung der gelösten Sauerstoffkonzentrationsfelder können wichtige Transportwege aufgedeckt werden. Diese unterscheiden sich deutlich zwischen inspiratorischer und expiratorischer Strömungsrichtung. Die initialen Konzentrationsfelder stimmen mit den unterliegenden Geschwindigkeitsfeldern überein, unterscheiden sich ab der verzögernden Strömungsphase jedoch. Höhere Volumenströme/Tidalvolumen tragen dabei zu einer gleichmäßigeren Konzentrationsverteilung bei.:List of Figures ....................................................................................... VII List of Tables ........................................................................................XIII Nomenclature ........................................................................................ XV 1 Introduction......................................................................................... 1 1.1 Motivation ........................................................................................1 1.2 Research objectives........................................................................... 3 1.3 Outline............................................................................................ 4 2 State of the art .................................................................................... 5 2.1 Liquid Ventilation............................................................................. 5 2.2 In vitro modeling.............................................................................. 8 2.3 Flow measurements ......................................................................... 11 2.4 Gas transport..................................................................................13 3 Flow field measurements ................................................................... 16 3.1 Hydrodynamic Model.......................................................................16 3.1.1 Lung replica ..........................................................................16 3.1.2 Flow parameter .....................................................................18 3.1.3 Limitations ...........................................................................22 3.2 Particle Tracking Velocimetry (PTV) ................................................24 3.2.1 Measurement principle ...........................................................24 3.2.2 Double-frame 2D-PTV ...........................................................25 3.2.3 Time-resolved 3D-PTV ..........................................................28 3.2.4 Phase-locked ensemble PTV ................................................... 31 3.3 Experimental set-up and measurement procedure ...............................33 3.3.1 Lung flow facility...................................................................33 3.3.2 2D-PTV configuration............................................................36 3.3.3 3D-PTV configuration............................................................36 3.4 Results & Discussion........................................................................38 3.4.1 Artificial lung........................................................................38 3.4.2 Realistic lung ........................................................................52 3.5 Conclusion ......................................................................................59 4 Oxygen transport ...............................................................................61 4.1 Hydrodynamic Model....................................................................... 61 4.1.1 Lung replica .......................................................................... 61 4.1.2 Flow parameter .....................................................................62 4.1.3 Limitations ...........................................................................65 4.2 Oxygen Sensitive Dye ......................................................................66 4.3 Experimental set-up......................................................................... 71 4.4 Results & Discussion........................................................................75 4.4.1 Constant flow rate .................................................................75 4.4.2 Oscillatory flow .....................................................................83 4.5 Conclusion ......................................................................................90 5 Summary............................................................................................ 92 6 Outlook .............................................................................................. 95 Bibliography ............................................................................................ 97

Page generated in 0.1126 seconds