Spelling suggestions: "subject:"partiels"" "subject:"carentiels""
31 |
Essays in functional econometrics and financial marketsTsafack-Teufack, Idriss 07 1900 (has links)
Dans cette thèse, j’exploite le cadre d’analyse de données fonctionnelles et développe
l’analyse d’inférence et de prédiction, avec une application à des sujets sur les marchés
financiers. Cette thèse est organisée en trois chapitres.
Le premier chapitre est un article co-écrit avec Marine Carrasco. Dans ce chapitre,
nous considérons un modèle de régression linéaire fonctionnelle avec une variable
prédictive fonctionnelle et une réponse scalaire. Nous effectuons une comparaison
théorique des techniques d’analyse des composantes principales fonctionnelles (FPCA)
et des moindres carrés partiels fonctionnels (FPLS). Nous déterminons la vitesse de
convergence de l’erreur quadratique moyen d’estimation (MSE) pour ces méthodes.
Aussi, nous montrons cette vitesse est sharp. Nous découvrons également que le biais
de régularisation de la méthode FPLS est plus petit que celui de FPCA, tandis que
son erreur d’estimation a tendance à être plus grande que celle de FPCA. De plus,
nous montrons que le FPLS surpasse le FPCA en termes de prédiction avec moins de
composantes.
Le deuxième chapitre considère un modèle autorégressif entièrement fonctionnel
(FAR) pour prèvoir toute la courbe de rendement du S&P 500 a la prochaine journée.
Je mène une analyse comparative de quatre techniques de Big Data, dont la méthode de
Tikhonov fonctionnelle (FT), la technique de Landweber-Fridman fonctionnelle (FLF), la
coupure spectrale fonctionnelle (FSC) et les moindres carrés partiels fonctionnels (FPLS).
La vitesse de convergence, la distribution asymptotique et une stratégie de test statistique
pour sélectionner le nombre de retard sont fournis. Les simulations et les données réelles
montrent que les méthode FPLS performe mieux les autres en terme d’estimation du
paramètre tandis que toutes ces méthodes affichent des performances similaires en termes
de prédiction.
Le troisième chapitre propose d’estimer la densité de neutralité au risque (RND) dans
le contexte de la tarification des options, à l’aide d’un modèle fonctionnel. L’avantage de
cette approche est qu’elle exploite la théorie d’absence d’arbitrage et qu’il est possible
d’éviter toute sorte de paramétrisation. L’estimation conduit à un problème d’inversibilité
et la technique fonctionnelle de Landweber-Fridman (FLF) est utilisée pour le surmonter. / In this thesis, I exploit the functional data analysis framework and develop inference,
prediction and forecasting analysis, with an application to topics in the financial market.
This thesis is organized in three chapters.
The first chapter is a paper co-authored with Marine Carrasco. In this chapter,
we consider a functional linear regression model with a functional predictor variable
and a scalar response. We develop a theoretical comparison of the Functional Principal
Component Analysis (FPCA) and Functional Partial Least Squares (FPLS) techniques.
We derive the convergence rate of the Mean Squared Error (MSE) for these methods. We
show that this rate of convergence is sharp. We also find that the regularization bias of
the FPLS method is smaller than the one of FPCA, while its estimation error tends to
be larger than that of FPCA. Additionally, we show that FPLS outperforms FPCA in
terms of prediction accuracy with a fewer number of components.
The second chapter considers a fully functional autoregressive model (FAR) to forecast
the next day’s return curve of the S&P 500. In contrast to the standard AR(1) model
where each observation is a scalar, in this research each daily return curve is a collection
of 390 points and is considered as one observation. I conduct a comparative analysis
of four big data techniques including Functional Tikhonov method (FT), Functional
Landweber-Fridman technique (FLF), Functional spectral-cut off (FSC), and Functional
Partial Least Squares (FPLS). The convergence rate, asymptotic distribution, and a
test-based strategy to select the lag number are provided. Simulations and real data
show that FPLS method tends to outperform the other in terms of estimation accuracy
while all the considered methods display almost the same predictive performance.
The third chapter proposes to estimate the risk neutral density (RND) for options
pricing with a functional linear model. The benefit of this approach is that it exploits
directly the fundamental arbitrage-free equation and it is possible to avoid any additional
density parametrization. The estimation problem leads to an inverse problem and the
functional Landweber-Fridman (FLF) technique is used to overcome this issue.
|
32 |
Phytochemical investigation of Acronychia species using NMR and LC-MS based dereplication and metabolomics approaches / Etude phytochimique d’espèces du genre Acronychia en utilisant des approches de déréplication et métabolomique basées sur des techniques RMN et SMKouloura, Eirini 28 November 2014 (has links)
Les plantes médicinales constituent une source inexhaustible de composés (des produits naturels - PN) utilisé en médecine pour la prévention et le traitement de diverses maladies. L'introduction de nouvelles technologies et méthodes dans le domaine de la chimie des produits naturels a permis le développement de méthodes ‘high throughput’ pour la détermination de la composition chimique des extraits de plantes, l'évaluation de leurs propriétés et l'exploration de leur potentiel en tant que candidats médicaments. Dernièrement, la métabolomique, une approche intégrée incorporant les avantages des technologies d'analyse moderne et la puissance de la bioinformatique s’est révélé un outil efficace dans la biologie des systèmes. En particulier, l'application de la métabolomique pour la découverte de nouveaux composés bioactifs constitue un domaine émergent dans la chimie des produits naturels. Dans ce contexte, le genre Acronychia de la famille des Rutaceae a été choisi sur la base de son usage en médecine traditionnelle pour ses propriétés antimicrobienne, antipyrétique, antispasmodique et anti-inflammatoire. Nombre de méthodes chromatographiques modernes, spectrométriques et spectroscopiques sont utilisées pour l'exploration de leur contenu en métabolites suivant trois axes principaux constituant les trois chapitres de cette thèse. En bref, le premier chapitre décrit l’étude phytochimique d’Acronychia pedunculata, l’identification des métabolites secondaires contenus dans cette espèce et l'évaluation de leurs propriétés biologiques. Le deuxième chapitre vise au développement de méthodes analytiques pour l'identification des dimères d’acétophénones (marqueurs chimiotaxonomiques du genre) et aux stratégies utilisées pour la déréplication de ces différents extraits et la caractérisation chimique des composés par UHPLC-HRMSn. Le troisième chapitre se concentre sur l'application de méthodologies métabolomique (RMN et LC-MS) pour l'analyse comparative (entre les différentes espèces, origines, organes), pour des études chimiotaxonomiques (entre les espèces) et pour la corrélation des composés contenus avec une activité pharmacologique. / Medicinal plants constitute an unfailing source of compounds (natural products – NPs) utilised in medicine for the prevention and treatment of various deceases. The introduction of new technologies and methods in the field of natural products chemistry enabled the development of high throughput methodologies for the chemical composition determination of plant extracts, evaluation of their properties and the exploration of their potentials as drug candidates. Lately, metabolomics, an integrated approach incorporating the advantages of modern analytical technologies and the power of bioinformatics has been proven an efficient tool in systems biology. In particular, the application of metabolomics for the discovery of new bioactive compounds constitutes an emerging field in natural products chemistry. In this context, Acronychia genus of Rutaceae family was selected based on its well-known traditional use as antimicrobial, antipyretic, antispasmodic and anti-inflammatory therapeutic agent. Modern chromatographic, spectrometric and spectroscopic methods were utilised for the exploration of their metabolite content following three basic axes constituting the three chapters of this thesis. Briefly, the first chapter describes the phytochemical investigation of Acronychia pedunculata, the identification of secondary metabolites contained in this species and evaluation of their biological properties. The second chapter refers to the development of analytical methods for the identification of acetophenones (chemotaxonomic markers of the genus) and to the dereplication strategies for the chemical characterisation of extracts by UHPLC-HRMSn. The third chapter focuses on the application of metabolomic methodologies (LC-MS & NMR) for comparative analysis (between different species, origins, organs), chemotaxonomic studies (between species) and compound-activity correlations.
|
Page generated in 0.0398 seconds