Spelling suggestions: "subject:"partition d'images"" "subject:"artition d'images""
1 |
Structural priors for multiobject semi-automatic segmentation of three-dimensional medical images via clustering and graph cut algorithms / A priori de structure pour la segmentation multi-objet d'images médicales 3d par partition d'images et coupure de graphesKéchichian, Razmig 02 July 2013 (has links)
Nous développons une méthode générique semi-automatique multi-objet de segmentation d'image par coupure de graphe visant les usages médicaux de routine, allant des tâches impliquant quelques objets dans des images 2D, à quelques dizaines dans celles 3D quasi corps entier. La formulation souple de la méthode permet son adaptation simple à une application donnée. En particulier, le modèle d'a priori de proximité que nous proposons, défini à partir des contraintes de paires du plus court chemin sur le graphe d'adjacence des objets, peut facilement être adapté pour tenir compte des relations spatiales entre les objets ciblés dans un problème donné. L'algorithme de segmentation peut être adapté aux besoins de l'application en termes de temps d'exécution et de capacité de stockage à l'aide d'une partition de l'image à segmenter par une tesselation de Voronoï efficace et contrôlable, établissant un bon équilibre entre la compacité des régions et le respect des frontières des objets. Des évaluations et comparaisons qualitatives et quantitatives avec le modèle de Potts standard confirment que notre modèle d'a priori apporte des améliorations significatives dans la segmentation d'objets distincts d'intensités similaires, dans le positionnement précis des frontières des objets ainsi que dans la robustesse de segmentation par rapport à la résolution de partition. L'évaluation comparative de la méthode de partition avec ses concurrentes confirme ses avantages en termes de temps d'exécution et de qualité des partitions produites. Par comparaison avec l'approche appliquée directement sur les voxels de l'image, l'étape de partition améliore à la fois le temps d'exécution global et l'empreinte mémoire du processus de segmentation jusqu'à un ordre de grandeur, sans compromettre la qualité de la segmentation en pratique. / We develop a generic Graph Cut-based semiautomatic multiobject image segmentation method principally for use in routine medical applications ranging from tasks involving few objects in 2D images to fairly complex near whole-body 3D image segmentation. The flexible formulation of the method allows its straightforward adaption to a given application.\linebreak In particular, the graph-based vicinity prior model we propose, defined as shortest-path pairwise constraints on the object adjacency graph, can be easily reformulated to account for the spatial relationships between objects in a given problem instance. The segmentation algorithm can be tailored to the runtime requirements of the application and the online storage capacities of the computing platform by an efficient and controllable Voronoi tessellation clustering of the input image which achieves a good balance between cluster compactness and boundary adherence criteria. Qualitative and quantitative comprehensive evaluation and comparison with the standard Potts model confirm that the vicinity prior model brings significant improvements in the correct segmentation of distinct objects of identical intensity, the accurate placement of object boundaries and the robustness of segmentation with respect to clustering resolution. Comparative evaluation of the clustering method with competing ones confirms its benefits in terms of runtime and quality of produced partitions. Importantly, compared to voxel segmentation, the clustering step improves both overall runtime and memory footprint of the segmentation process up to an order of magnitude virtually without compromising the segmentation quality.
|
Page generated in 0.0701 seconds