• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Passive thermal management of distribution grid assets

Hesse, Danielle 07 January 2016 (has links)
This thesis presents a comprehensive study into the passive thermal management of high-voltage power electronics converters for use in augmented grid assets capable of performing power routing on the electricity grid. The work has focused on the thermal transport of single-phase closed thermosiphon systems incorporating a secondary parallel flow path for cooling an additional, typically smaller, thermal load associated with the power electronics converters. Dual-loop thermosiphon passive thermal management systems were incorporated into a grounded compact dynamic phase angle regulator (GCD-PAR) that aimed to facilitate power routing and reduce line losses on the power grid. The power router utilizes power electronics that reject heat to a planar area, or cold plate, which must be cooled by an entirely passive system to comply with the minimum 30 year mean time between failures (MTBF) consistent with grid reliability requirements. This design includes a secondary-loop cooling path that utilizes the cooling oil already present in the transformer to also cool the power router. An analytical multi-physics thermosiphon model is developed that couples existing fluid dynamic and heat transfer correlations to create a description of the steady state operation of a specific cylindrical 50 kVA transformer augmented with a thermosiphon. The model is validated experimentally and found to solve for steady state baseplate temperatures under maximum load within 2°C in 0.1 seconds. The model is then modified for a specific rectilinear 1 MVA transformer augmented with three thermosiphons. The 1 MVA model is validated experimentally and found to solve for steady state baseplate temperatures under maximum load within 4 °C in 0.2 seconds. The analytical model proves to be accurate and solve quickly with various geometric configurations and thermal loads.
2

Thermal comfort for urban housing in Bangladesh

Mallick, Fuad Hassan January 1994 (has links)
No description available.
3

Application of porous ceramics and wind catchers for direct and indirect evaporative cooling in buildings

Al-Koheji, Mohamed Y. January 2003 (has links)
No description available.
4

Radiative Cooling of Outdoor Light emitting Diodes (LEDs)

Almahfoudh, Hasan 06 1900 (has links)
The coldness of outer space is a huge thermodynamic resource that can be utilized as an infinite heat sink that helps in cooling terrestrial objects without the need for electrical energy through a phenomenon known as radiative sky cooling. In the last decade, radiative cooling has seen an increasing attention as a sustainable and clean cooling method and many researchers made smart use of it as a thermal management method. One example in the literature is the radiative cooling of solar cells. Like solar cells, Light Emitting Diodes (LEDs) are semiconductor devices that deteriorate because of high temperatures. Specifically, the high temperature in LEDs lowers their efficiency and lifetime. Therefore, reducing the temperature by increasing heat dissipation can help in optimizing the efficiency of the LED. In this work, I investigate a novel low-cost solution that can help in reducing the temperature of outdoor LEDs through radiative cooling. The suggested solution utilizes the coldness of outer space to radiatively cool the LED by using a layer of a visible-reflective-infrared-transparent material, nanoporous polyethylene (nanoPE), as a cover to reflect the visible light back to earth while transmitting infrared radiation to outer space. I theoretically discuss the potential cooling performance of LEDs in the suggested design and estimate a cooling power enhancement by 128 W/m2 in ideal conditions compared to current designs. In addition, I study the fabrication and characteristics of nanoPE and show how it can be used as a reflective/diffusive cover for LEDs. Lastly, I experimentally demonstrate the use of nanoPE as a cover for LEDs and show an LED temperature reduction of 15 ⁰C in the laboratory environment and 4 ⁰C outdoor and calculate a relative LED efficiency increase of 28% in the indoor scenario and 4% in the outdoor scenario. This efficiency increase can result in an energy saving of 2.2 TWh in the United States corresponding to at least 0.44 MMT CO2 emission reduction making this cooling solution attractive due to its low cost and high impact.
5

The effects of realistic surface properties on low temperature space observatories

Blake, Robert January 1997 (has links)
No description available.
6

Laboratory measurements of realistic space-aged surfaces and the development of a Monte Carlo simulation to model radiative transfer in a passively cooled space telescope

Sullivan, Mark January 2001 (has links)
No description available.
7

Evaluating and enhancing design for natural ventilation in walk-up public housing blocks in the Egyptian desert climatic design region

Osman, Medhat January 2011 (has links)
This work is concerned with evaluating and studying the possibilities of enhancing natural ventilation performance and its use as a passive cooling strategy in walk-up public housing blocks within the Egyptian desert climatic region. This research attempts to maximize the benefits from the vast investments made in housing projects in Egypt through providing thermally comfortable housing prototypes that could use by contrast less energy for cooling purposes. This is considered essential in the light of the current concerns about energy all over the world. Egypt was devided to seven different climatic regions by the Egyptian organization for energy conservation and planning. The Egyptian desert climatic region, which was chosen as the research context, is the largest climatic region of Egypt. Most of the Egyptian new cities that accommodate the majority of the recent public housing projects are located within this desert climatic region that represents the typical hot arid climate characteristics. Nationally, the problem of the misuse of the housing prototyping was spotted. According to previous researchers, the same basic prototypical designs are being built all over the country without giving enough consideration to the actual effects of different climates and the diversity in the residents social needs. Regionally, within the Egyptian desert climatic region, the harsh climatic conditions rate the problem of achieving thermal comfort within these housing prototypes as the most urgent problem that needs to be examined in depth. A pilot study that used observation and monitoring methods was conducted in the New Al-Minya city (The representative city of the desert climatic design region) in order to closely investigate this problem and identify its dimensions. The results confirmed thermal discomfort conditions of the housing prototypes built there, especially during the hot summer period. The passive design strategies analysis of the climatic context indicated that night purge ventilation is the most effective passive strategy that could enhance thermal comfort. These results go along with the rule of natural ventilation in reducing the used energy for cooling and the actually massive national income spent on these housing prototypes encourage this work so to concentrate on natural ventilation. Different studies using multi-approaches research techniques were employed in order to achieve the main aim of the research. These techniques included; literature review, monitoring, questionnaire and computer simulation.A critical literature review was conducted including; the physical science of natural ventilation, its strategic design as well as the design measures that control natural ventilation and the airflow in; the macro, intermediate and micro design levels. The results of the investigations were discussed and interpreted in the light of this review. A representative case study was chosen for the study. The natural ventilation performance in the case study was quantitatively and qualitatively evaluated through conducting field objective and subjective assessment respectively. In evaluation study, the thermal performance of the case study under different ventilation scenarios was monitored, the airflow inside it was simulated using CFD (computational fluid dynamics) software “FloVent” and a sample of residents were questioned. This study identified many problems associated natural ventilation uses and indicated its poor performance within the case study. A number of design measures were formulated based on the literature review and considering the evaluation study results along with the research context nature. The proposed natural ventilation design measures were applied to the case studies and their effectiveness in terms of enhancing the natural ventilation performance was quantified using “FloVent”. Results reported that the proposed natural ventilation design measures could significantly enhance the natural ventilation performance inside the case study quantitatively and qualitatively. This in turn maximizes the potential of providing thermal comfort by using both natural ventilation strategies; comfort ventilation and night purge ventilation. However, all the applied measures could not achieve neither an acceptable airspeed at any of the case study spaces nor a good airflow circulation at some of its spaces. It can be concluded that the current design of the case study can not achieve quality airflow without the use of the mechanical assisted ventilation. In general, it seems very difficult to optimize the air velocity within all spaces in a very dense multi-space design like this case study. A new design that considers natural ventilation and its drivers has to be introduced.
8

Cooling Strategies for Wave Power Conversion Systems

Baudoin, Antoine January 2016 (has links)
The Division for Electricity of Uppsala University is developing a wave power concept. The energy of the ocean waves is harvested with wave energy converters, consisting of one buoy and one linear generator. The units are connected in a submerged substation. The mechanical design is kept as simple as possible to ensure reliability. The submerged substation includes power electronics and different types of electrical power components. Due to the high cost of maintenance operations at sea, the reliability of electrical systems for offshore renewable energy is a major issue in the pursuit of making the electricity production economically viable. Therefore, proper thermal management is essential to avoid the components being damaged by excessive temperature increases. The chosen cooling strategy is fully passive, and includes no fans. It has been applied in the second substation prototype with curved heatsinks mounted on the inner wall of the pressurized vessel. This strategy has been evaluated with a thermal model for the completed substation. First of all, 3D-CFD models were implemented for selected components of the electrical conversion system. The results from these submodels were used to build a lumped parameter model at the system level. The comprehensive thermal study of the substation indicates that the rated power in the present configuration is around 170 kW. The critical components were identified. The transformers and the inverters are the limiting components for high DC-voltage and low DC-voltage respectively. The DC-voltage—an important parameter in the control strategy for the WEC—was shown to have the most significant effect on the temperature limitation. As power diodes are the first step of conversion, they are subject to large power fluctuations. Therefore, we studied thermal cycling for these components. The results indicated that the junction undergoes repeated temperature cycles, where the amplitude increased with the square root of the absorbed power. Finally, an array of generic heat sources was optimized. We designed an experimental setup to investigate conjugate natural convection on a vertical plate with flush-mounted heat sources. The influence of the heaters distribution was evaluated for different dissipated powers. Measurements were used for validation of a CFD model. We proposed optimal distributions for up to 36 heat sources. The cooling capacity was maximized while the used area was minimized.
9

Cooling multi-family residential units using natural ventilation in the Central U.S.

Rai, Roby January 1900 (has links)
Master of Science / Department of Architecture / Michael D. Gibson / The use of Natural Ventilation (NV) to cool buildings in mixed climates can conserve significant cooling energy. In mixed climates it is particularly important during the fall and the spring, where appropriately designed buildings should use very little energy for heating or cooling. Natural ventilation is also important in residential buildings, where internal heat gain can be managed, making cooling by natural ventilation easier. Earlier investigations have clearly shown the economic, social, and health benefits of the use of NV in built environment. Studies have shown that increased airflow or air-speed during ventilation can bring a significant rise in comfort range which further reduces the cooling energy required to maintain comfort. The climatic data of the central United States (U.S.) shows that the availability of frequent high speed wind and favorable seasonal humidity conditions make natural ventilation feasible in late spring and early fall, where NV can offset most of the cooling demand for a home or multifamily residential unit, though it is not possible to maintain thermal comfort during the entire summer with NV alone. In mixed climates, NV for multifamily residential units has not been investigated thoroughly. According to 2009 International Residential Code, multifamily residential buildings are typically designed to use a code minimum amount of operable or ventilating windows, 4% of the floor area being ventilated, while also using lightweight construction methods (such as wood framing) that is prone to fast thermal response during the overheated periods of the year. While climate may favor the use of NV in these building types, the sizing of windows and the building construction type limit the potential to save energy with NV. This study hypothesized that the maximum benefits from NV in the climate of the central U.S. requires further optimization of window openings beyond the energy code minimum, and a construction system incorporating mass that can slow thermal response during overheated periods. During the study, the climatic data of the central US was scrutinized to understand the most suitable time frames where NV could be applied in order to maintain indoor thermal comfort in various construction systems in residential buildings: mainly lightweight using wood framing, and heavier construction using concrete and masonry. The location of the housing unit, first level or second level, was also examined to account for the differences in thermal gains and losses as a result of ground coupling and additional heat gain from the roof. Further, computational fluid dynamics evaluated the comfort achieved with different ventilation areas. Change in comfort hours by using NV tested the practicability of the use of NV to maintain indoor thermal comfort for different scenarios. The study concluded with design recommendations for building orientation, operable window size, and construction type as these factors relate to thermal comfort and the optimization of multifamily residential buildings to utilize NV for energy savings in the U.S.
10

Appropriate Passive Cooling Strategies For Hot And Humid Climates: A Case Study In Cyprus

Hancerli, Mustafa Yilmaz 01 March 2008 (has links) (PDF)
In this study, energy conservation potential of appropriate passive cooling and basic heat avoidance strategies were investigated for hot and humid climates. Within this framework, thermal behavior of a case study building that is situated in Cyprus was assessed by collecting temperature and relative humidity data from various rooms of the building during certain days in August. Then, by using feasible simulation strategies of the software tool Summer-Building, the effectiveness of passive cooling measures in reducing energy consumption were examined, for summer months. In this context, the case study building was re-evaluated by applying natural ventilation, night ventilation and ground cooling strategies as well as solar control and shading devices as overhangs and side fins. Consequently, based on the results of the evaluation model, it was found that the proposed passive cooling strategies and basic heat avoidance concepts could provide more than 50 % energy conservation, relative to the completely air conditioned reference building, between 1-15 August 2007.

Page generated in 0.0596 seconds