• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Bayesian Approach to Estimating Background Flows from a Passive Scalar

Krometis, Justin 26 June 2018 (has links)
We consider the statistical inverse problem of estimating a background flow field (e.g., of air or water) from the partial and noisy observation of a passive scalar (e.g., the concentration of a pollutant). Here the unknown is a vector field that is specified by large or infinite number of degrees of freedom. We show that the inverse problem is ill-posed, i.e., there may be many or no background flows that match a given set of observations. We therefore adopt a Bayesian approach, incorporating prior knowledge of background flows and models of the observation error to develop probabilistic estimates of the fluid flow. In doing so, we leverage frameworks developed in recent years for infinite-dimensional Bayesian inference. We provide conditions under which the inference is consistent, i.e., the posterior measure converges to a Dirac measure on the true background flow as the number of observations of the solute concentration grows large. We also define several computationally-efficient algorithms adapted to the problem. One is an adjoint method for computation of the gradient of the log likelihood, a key ingredient in many numerical methods. A second is a particle method that allows direct computation of point observations of the solute concentration, leveraging the structure of the inverse problem to avoid approximation of the full infinite-dimensional scalar field. Finally, we identify two interesting example problems with very different posterior structures, which we use to conduct a large-scale benchmark of the convergence of several Markov Chain Monte Carlo methods that have been developed in recent years for infinite-dimensional settings. / Ph. D.
2

Turbulent Mixing of Passive Scalars at High Schmidt Number

Xu, Shuyi 13 January 2005 (has links)
A numerical study of fundamental aspects of turbulent mixing has been performed,with emphasis on the behavior of passive scalars of low molecular diffusivity (high Schmidt number Sc). Direct Numerical Simulation is used to simulate incompressible, stationary and isotropic turbulence carried out at high grid resolution. Data analyses are carried out by separate parallel codes using up to 1024^3 grid points for Taylor-scale Reynolds number (R_lambda) up to 390 and Sc up to 1024.Schmidt number of order 1000 is simulated using a double-precision parallel code in a turbulent flow at a low Reynolds number of R_lambda 8 to reduce computational cost to achievable level. The results on the scalar spectrum at high Schmidt numbers appear to have a k^{-1} scaling range. In the presence of a uniform mean scalar gradient, statistics of scalar gradients are observed to deviate substantially from Kolmogorov's hypothesis of local isotropy, with a skewness factor remaining at order unity as the Reynolds number increases. However, this skewness decreases with Schmidt number suggesting that local isotropy for scalars at high Schmidt number is a better approximation. Intermittency exponents manifested by three types of two-point statistics of energy and scalar dissipation, i.e., the two-point correlator (chi(x)chi(x+r)), the second-order moment of local scalar dissipation (chi_r^2) and the variance of the logarithmic local scalar dissipation sigma^2_{lnchi_r} are discussed. Several basic issues in differential diffusion between two scalars of different molecular diffusivities transported by the same turbule nt flow, the physical process of scalar spectral transfer and subgrid-scale transfer are also briefly addressed.

Page generated in 0.041 seconds