• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of jet configuration on transverse jet mixing process

Kim, Sin Hyen 12 July 2011 (has links)
Transverse jets in crossflow are widely used to enhance mixing between two flow streams. Such jets exhibit complex flow features, and are highly sen- sitive to a wide variety of operating conditions. The focus of this work is the mixing of relatively low Reynolds number jets that are often encountered in the chemical processing industry. The main objective is to determine if the the jet mixing characteristics can be sufficiently altered by changing the nature of the jet inflow. In particular, we study the effect of jet shape and inflow veloc- ity profile on the mixing properties. Four different jet shapes including circle, square, upstream triangle, and downstream triangle are considered. It is found that the jet shape has tremendous impact on the near field dynamics, gener- ating unique vortical structures for each shape. However, the overall mixing rate is unaffected and is controlled by the evolution of the coherent vortex pair (CVP) in the far-field of the jet. Analyses of turbulence modeling constraints and structure of reaction zones for consecutive-competitive reactions are also presented. / text
2

Tag deposition kinetics and selectivity in the magnetic tagging of mineral suspensions

Kerbey, Mark Henry January 2000 (has links)
No description available.
3

The development of turbulent slender open-core annular jets

Padhani, Shahid Anwar January 2019 (has links)
The very first study of the development of the turbulent isothermal and incompressible air jet which issues at a constant velocity from a slender annular slot, circumnavigating an open core, into an otherwise quiescent and unbounded environment of the same density, is presented. The geometry of this source is defined by three diameters: the outer diameter of the slot $D_o$; the inner diameter of the slot $D_i$; and the diameter of the (circular) open core $D_v$. `Slender' refers to a slot for which the inner and outer diameters are approximately equal, i.e. $D_i/D_o\approx 1$. Our focus lies in understanding the development of the time-averaged flow with distance downstream and the influence of the source geometry on the development of the jet. Given the absence of information on jets issuing from the sources of interest, the investigation follows an approach reminiscent of the classic investigations into round jets. That is, it begins with the development of a nozzle and experimental set-up which are suitable for studying the slender open-core annular jet. In addition to the experimental measurements, a complementary mathematical model was developed to describe the unique near-field behaviour of the open-core jet. Measurements were acquired using flow visualisation and Particle Image Velocimetry. On examining the streamwise development of the flow, the slender almost fully open-core jet was delineated into four key regions and the characteristic scalings identified. The regions were as follows: a bounded induced-flow region; a near-source planar-jet region; a transitional region; and a far-field round-jet region. Fluid induced through the open core of the nozzle and subsequently entrained into the jet significantly enhanced the near-field dilution of the jet. Following on from this, the influence of the diameter ratio $D_i/D_o$ and ventilation ratio $D_v/D_i$ on jet coalescence was examined. Over the range of diameter ratios examined ($0.845 \leq D_i/D_o\leq 0.981$), experimental measurements and the predictions from mathematical modelling indicated that $D_i/D_o$ significantly influenced the volume flux induced through the core while the coalescing behaviour of the jet and the far-field region remained largely unchanged. Over the range of ventilation ratios examined ($0 \leq D_v/D_i\leq 0.90$), experimental measurements demonstrated that $D_v/D_i$ controlled the restriction experienced by fluid induced through the open core and significantly influenced the far-field behaviour of the jet. Our findings suggest that jet of interest is then uniquely characterised by the momentum flux $M_0$, the diameter ratio $D_i/D_o$, and the ventilation ratio $D_v/D_i$.
4

Effects of bottom topography and flows on oceanic turbulent mixing

Kuo, Wen-yu 03 January 2012 (has links)
This study investigates the turbulent mixing characteristics of Peng-hu Channel, South China Sea along 21¢XN and the Kuroshio region by using CTD/LADCP and MicroRider. Dissipation rate of turbulent kinetic energy or thermal variances is estimated primarily by the Thorpe overturn method, and is compared with the microstructure turbulence from direct measurement as well as those estimated from the parameterization method based on shear and strain spectra. Our results indicate that there are different turbulent characteristics and dynamic mechanisms at these three regions. Because of its funnel-shaped topography and strong semi-diurnal tides in the Peng-hu Channel, the turbulent mixing and eddy diffusivity reach a maximum value at the narrowest part of Peng-hu Channel near its sea bottom and show a clear tidal variation. In the main stream of Kuroshio where the current speed is faster than 0.8 m/s, turbulent mixing is not particularly stronger than non-main stream zone. In the Kuroshio frontal zone between the Kuroshio and the coastal waters off east Taiwan coast, strong turbulent mixing in the surface layer can be detected. Island wake which is formed when Kuroshio runs into the Lan-yu Island is a transient feature. Strong mixing in the upper 100 m accompanied with upwelling and vortices were observed during one event. The topography along the latitude of 21¢XN is rugged and rough in the Luzon Strait which consists of several ridges and seamounts. Due to its complicated topography and generation of strong semi-diurnal internal tides, eddy diffusivity as high as 10^(-2)m^2/s was measured in the bottom layer of the Luzon Strait.
5

Particle formation by mixing with supercritical antisolvent at high Reynolds numbers.

Shekunov, Boris Yu., Baldyga, J., York, Peter January 2001 (has links)
No / A precipitation process is considered in which completely miscible solution and supercritical antisolvent are passed through premixing and diluting zones of a turbulent flow. The influence of flow velocity on particle size and nuclei concentration is discussed in terms of mixing and precipitation time constants and their supersaturation dependencies. The proposed model allowed the major process parameters such as supersaturation profile, mixed fluid fraction and mean particle size to be calculated and compared with experimental data. For the crystallization system paracetamol/ethanol/CO2 studied, the supersaturation profile becomes established at Re104. The particle size and shape are defined, firstly, by increase of supersaturation and relative volume of mixed (on molecular scale) fluid with increase of flow velocity and, secondly, by decrease of residence time available for nucleation with increase of flow velocity. These competitive processes can result in minimum particle size at a defined flow rate.
6

Modélisation des effets d'interpénétration entre fluides au travers d'une interface instable

Huber, Grégory 28 August 2012 (has links)
Les mélanges multiphasiques en déséquilibre de vitesse sont habituellement modélisés à l'aide d'un modèle à 6 ou 7 équations (Baer and Nunziato, 1986). Ces modèles sont très efficaces pour traiter des mélanges avec effets d'interpénétration. Ils peuvent aussi être utilisés pour traiter des problèmes à interface dans lesquels il est nécessaire de respecter les conditions d'interface (continuité de la vitesse normale et de la pression). Ceci est réalisé à l'aide de solveurs de relaxation mécanique (Saurel and Abgrall, 1999). Une autre méthode consiste à utiliser un modèle à une vitesse et une pression (Kapila et al., 2001). Cependant, de nombreuses applications font intervenir des interfaces instables entre fluides. On traite habituellement ces zones de mélanges turbulents en utilisant un modèle à une vitesse et en résolvant spatialement les diverses instabilités. Dans de nombreuses applications cela devient impossible en raison du trop grand nombre de « jets » et de « bulles ». De plus, on rencontre des difficultés numériques y compris pour le calcul d'une instabilité isolée (Liska and Wendroff, 2004). Dans ce manuscrit, nous abordons le problème de la modélisation des zones de mélange avec des modèles multiphasiques. Cela pose un sérieux problème de modélisation pour des écoulements évoluant d'une situation où l'interface est bien définie (une seule vitesse) vers une configuration de mélange de fluides à plusieurs vitesses. Cette question a été abordée par Besnard and Harlow (1988), Youngs et al. (1989), Chen et al. (1996), Glimm et al. (1999), Saurel et al. (2003) par exemple. / Multiphase mixtures with velocity disequilibrium are usually modelled with 6 or 7 equations models (Baer and Nunziato, 1986). These models are very efficient to model mixtures with velocity drift effects. They can also be used to model interfacial flows where the respect of interface conditions (continuous normal velocity and pressure) is mandatory. Such aim is usually achieved with the help of stiff mechanical relaxation solvers (Saurel and Abgrall, 1999). Another option is to use single pressure and single velocity models (Kapila et al., 2001). However, many applications involve unstable fluid-fluid interfaces for which flow conditions range from well separated fluids to fully mixed ones. The usual way to deal with these turbulent mixing zones is to use a single velocity flow model and to resolve spatially the various instabilities. However, spatial resolution of these instabilities in many applications is impossible as too many ‘jets' and ‘bubbles' are present. Also, numerical difficulties and large inaccuracies are present even for an isolated instability computation (Liska and Wendroff, 2004). In this work, we address the issue of mixing zone modelling with multiphase flow models. This poses the serious difficulty of model derivation for flows conditions ranging from well defined interfaces (single velocity) to fluid mixtures evolving with several velocities. This issue has been addressed by Besnard and Harlow (1988), Youngs et al. (1989), Chen et al. (1996), Glimm et al. (1999), Saurel et al. (2003) to cite a few. In Saurel et al. (2010) an extension of the Kapila et al. (2001) model was done to deal with permeation effects through material interfaces.
7

Dynamique de processus océaniques de méso- et de subméso-échelle à partir de simulations numériques et de données in situ / Dynamics of meso- and submesoscale oceanic processes from numerical simulations and in situ data

Kersale, Marion 15 October 2013 (has links)
L'hydrodynamisme autour des îles océaniques et dans les régions côtières est caractérisé par la présence de nombreuses structures de méso- et de subméso-échelle. L'objectif de cette thèse est d'étudier, à partir de données in situ et de modélisation numérique, d'une part la prédominance de certains forçages dans la génération de ces structures et d'autre part leurs dynamiques et leurs impacts sur la dispersion des eaux côtières. Dans un premier temps, une étude basée sur des données issues d'un modèle hydrodynamique autour de l'archipel hawaïen a permis d'évaluer les influences respectives et l'importance des forçages du vent, de la topographie et de la circulation générale sur la génération de tourbillons de méso-échelle. Des tests de sensibilité ont mis en évidence l'intérêt d'une haute-résolution spatiale du forçage atmosphérique. Dans un deuxième temps, la dynamique côtière du Golfe du Lion (GdL) a été investie. Une première étude s'est focalisée sur les caractéristiques physiques et la dynamique d'un tourbillon dans la partie ouest du golfe à l'aide de données de la campagne Latex09 et de résultats d'un modèle hydrodynamique. Leur analyse combinée a permis d'identifier un nouveau processus de génération de tourbillons de méso-échelle dans cette zone et de mettre en évidence la formation d'une structure transitoire de subméso-échelle. Basée sur les données de la campagne Latex10, une deuxième étude s'est alors orientée sur la dispersion des eaux côtières de la partie occidentale du GdL. Un suivi lagrangien des masses d'eau a permis de déterminer les coefficients horizontaux et verticaux de diffusion dans cette zone clef pour les échanges côte-large ou interrégionaux. / The hydrodynamics around oceanic islands and in coastal areas is characterized by the presence of numerous meso- and submesocale features. The aim of this PhD thesis is to study, from in situ data and numerical modeling, firstly the predominance of some forcings on the generation of these features and secondly their dynamics and their impacts on the dispersion of coastal waters. Firstly, a study based on a series of numerical simulations in the Hawaiian region, allows us to examine the relative importance of wind, topographic and inflow current forcing on the generation of mesoscale eddies. Sensitivity tests have shown the importance of high wind-forcing spatial resolution. Secondly, the coastal dynamics of the Gulf of Lions (GoL), also subject to these forcings, has been investigated. A first part focuses on the physical characteristics and the dynamics of an eddy in the western part of the gulf, using data from the Latex09 campaign and results from a realistic hydrodynamic model of the GoL. Their combined analysis has allowed to identify a new generation mechanism for the mesoscale eddies in this area and to understand the formation of a transient submesoscale structure. This work has shown the importance of these structures in modulating exchanges in this region. Based on the data of the Latex10 campaign, a second part has then focused on the dispersion of coastal waters in the western area of the GoL. The tracking of the water masses in a Lagrangian reference frame (floats, tracer) has allowed to determine the horizontal and vertical diffusion coefficients in this key area for coastal-offshore and interregional exchanges.
8

CFD modelling of gas turbine combustion processes

Uyanwaththa, Asela R. January 2018 (has links)
Stationary gas turbines manufacturers and operators are under constant scrutiny to both reduce environmentally harmful emissions and obtain efficient combustion. Numerical simulations have become an integral part of the development and optimisation of gas turbine combustors. In this thesis work, the gas turbine combustion process is analysed in two parts, a study on air-fuel mixing and turbulent combustion. For computational fluid dynamic analysis work the open-source CFD code OpenFOAM and STAR-CCM+ are used. A fuel jet injected to cross-flowing air flow is simplified air-fuel mixing arrangement, and this problem is analysed numerically in the first part of the thesis using both Reynolds Averaged Navier Stokes (RANS) method and Large Eddy Simulation (LES) methods. Several turbulence models are compared against experimental data in this work, and the complex turbulent vortex structures their effect on mixing field prediction is observed. Furthermore, the numerical methods are extended to study twin jets in cross-flow interaction which is relevant in predicting air-fuel mixing with arrays of fuel injection nozzles. LES methods showed good results by resolving the complex turbulent structures, and the interaction of two jets is also visualised. In this work, all three turbulent combustion regimes non-premixed, premixed, partially premixed are modelled using different combustion models. Hydrogen blended fuels have drawn particular interest recently due to enhanced flame stabilisation, reduced CO2 emissions, and is an alternative method to store energy from renewable energy sources. Therefore, the well known Sydney swirl flame which uses CH4: H2 blended fuel mixture is modelled using the steady laminar flamelet model. This flame has been found challenging to model numerically by previous researchers, and in this work, this problem has been addressed with improved combustion modelling approach with tabulated chemistry. Recognizing that the current and future gas turbine combustors operate on a mixed combustion regime during its full operational cycle, combustion simulations of premixed/partially premixed flames are also performed in this thesis work. Dynamical artificially thickened flame model is implemented in OpenFOAM and validated using propagating and stationary premixed flames. Flamelet Generated Manifold (FGM) methods are used in the modelling of turbulent stratified flames which is a relatively new field of under investigation, and both experimental and numerical analysis is required to understand the physics. The recent experiments of the Cambridge stratified burner are studied using the FGM method in this thesis work, and good agreement is obtained for mixing field and temperature field predictions.
9

Computation and Analysis of EGR Mixing in Internal Combustion Engine Manifolds

Sakowitz, Alexander January 2013 (has links)
This thesis deals with turbulent mixing processes occurring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the fresh intake air, reducing the oxygen con- centration of the combustion gas and thus the peak combustion temperatures. This temperature decrease results in a reduction of NOx emissions. When applying EGR, one is often faced with non-uniform distribution of exhaust among and inside the cylinders, deteriorating the emission performance. The mixing of exhaust gases and air is governed by the flow in the engine intake manifold, which is characterized by unsteadiness due to turbulence and engine pulsations. Moreover, the density cannot be assumed to be constant due to the presence of large temperature variations.Different flow cases having these characteristics are computed by compressible Large Eddy Simulations (LES). First, the stationary flows in two T-junction type geometries are investigated. The method is validated by comparison with experimental data and the accuracy of the simulations is confirmed by grid sensitivity studies. The flow structures and the unsteady flow modes are described for a range of mass flow ratios between the main and the branch inlet. A comparison to RANS computations showed qualitatively different flow fields.Thereafter, pulsating inflow conditions are prescribed on the branch inlet in or- der to mimic the large pulsations occurring in the EGR loop. The flow modes are investigated using Dynamical Mode Decomposition (DMD).After having established the simulation tool, the flow in a six-cylinder engine is simulated. The flow is studied by Proper Orthogonal Decomposition (POD) and DMD. The mixing quality is studied in terms of cylinder-to-cylinder non-uniformity and temporal and spatial variances. It was found that cycle-averaging of the concentration may give misleading results. A sensitivity study with respect to changes in the boundary conditions showed that the EGR pulsations, have large influence on the results. This could also be shown by POD of the concentration field showing the significance of the pulses for the maldistribution of exhaust gases.Finally, the flow in an intake manifold of a four-cylinder engine is investigated in terms of EGR distribution. For this geometry, pipe bends upstream of the EGR inlet were found to be responsible for the maldistribution. / <p>QC 20130207</p>
10

Experimental and Numerical Study of Molecular Mixing Dynamics in Rayleigh- Taylor Unstable Flows

Mueschke, Nicholas J. 16 January 2010 (has links)
Experiments and simulations were performed to examine the complex processes that occur in Rayleigh�Taylor driven mixing. A water channel facility was used to examine a buoyancy-driven Rayleigh�Taylor mixing layer. Measurements of �uctuating den- sity statistics and the molecular mixing parameter were made for Pr = 7 (hot/cold water) and Sc 103 (salt/fresh water) cases. For the hot/cold water case, a high- resolution thermocouple was used to measure instantaneous temperature values that were related to the density �eld via an equation of state. For the Sc 103 case, the degree of molecular mixing was measured by monitoring a di�usion-limited chemical reaction between the two �uid streams. The degree of molecular mixing was quanti- �ed by developing a new mathematical relationship between the amount of chemical product formed and the density variance 02. Comparisons between the Sc = 7 and Sc 103 cases are used to elucidate the dependence of on the Schmidt number. To further examine the turbulent mixing processes, a direct numerical simu- lation (DNS) model of the Sc = 7 water channel experiment was constructed to provide statistics that could not be experimentally measured. To determine the key physical mechanisms that in�uence the growth of turbulent Rayleigh�Taylor mixing layers, the budgets of the exact mean mass fraction em1, turbulent kinetic energy fE00, turbulent kinetic energy dissipation rate e 00, mass fraction variance gm002 1 , and mass fraction variance dissipation rate f 00 equations were examined. The budgets of the unclosed turbulent transport equations were used to quantitatively assess the relative magnitudes of di�erent production, dissipation, transport, and mixing processes. Finally, three-equation (fE00-e 00-gm002 1 ) and four-equation (fE00-e 00-gm002 1 -f 00) turbulent mixing models were developed and calibrated to predict the degree of molecular mix- ing within a Rayleigh�Taylor mixing layer. The DNS data sets were used to assess the validity of and calibrate the turbulent viscosity, gradient-di�usion, and scale- similarity closures a priori. The modeled transport equations were implemented in a one-dimensional numerical simulation code and were shown to accurately reproduce the experimental and DNS results a posteriori. The calibrated model parameters from the Sc = 7 case were used as the starting point for determining the appropri- ate model constants for the mass fraction variance gm002 1 transport equation for the Sc 103 case.

Page generated in 0.0796 seconds