• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MÉTHODES ASYMPTOTIQUES POUR LES ÉQUATIONS DE TYPE HELMHOLTZ OU NAVIER-STOKES

Klak, Aurélien 24 June 2011 (has links) (PDF)
Dans cette thèse, nous étudions deux problèmes différentiels dépendant d'un paramètre ε et étu- dions l'asymptotique des solutions lorsque ce paramètre tend vers 0. Le premier problème est lié à l'équation de Helmholtz haute-fréquence. On construit un potentiel non captif ne satisfaisant pas l'hypothèse de refocalisation des rayons introduite par F. Castella. On montre que l'ensemble des tra jectoires hamiltoniennes (associées au potentiel construit) issues de l'origine et qui reviennent en 0 forme une sous-variété de dimension d − 1, où d est la dimension de l'espace. On montre alors que la solution de l'équation de Helmholtz converge vers une perturbation de la solution de Helmholtz avec condition de radiation à l'infini et coefficients figés en 0. Dans un second temps, nous étudions une équation de Navier-Stokes forcée par une source po- larisée fortement oscillante. On exhibe une famille de solutions exactes. On étudie alors la stabilité de cette famille lorsqu'on la perturbe à l'instant initial. On construit une solution approchée du pro- blème à l'aide d'une couche limite à l'instant initial (t=0). Ce développement montre en particulier que des interactions d'ondes, se propageant à des échelles différentes, peuvent se traduire au niveau macroscopique par une augmentation de la viscosité. Enfin, on justifie la convergence de la solution approchée vers la solution exacte à l'aide de méthodes d'énergie.
2

Modélisation des effets d'interpénétration entre fluides au travers d'une interface instable

Huber, Grégory 28 August 2012 (has links)
Les mélanges multiphasiques en déséquilibre de vitesse sont habituellement modélisés à l'aide d'un modèle à 6 ou 7 équations (Baer and Nunziato, 1986). Ces modèles sont très efficaces pour traiter des mélanges avec effets d'interpénétration. Ils peuvent aussi être utilisés pour traiter des problèmes à interface dans lesquels il est nécessaire de respecter les conditions d'interface (continuité de la vitesse normale et de la pression). Ceci est réalisé à l'aide de solveurs de relaxation mécanique (Saurel and Abgrall, 1999). Une autre méthode consiste à utiliser un modèle à une vitesse et une pression (Kapila et al., 2001). Cependant, de nombreuses applications font intervenir des interfaces instables entre fluides. On traite habituellement ces zones de mélanges turbulents en utilisant un modèle à une vitesse et en résolvant spatialement les diverses instabilités. Dans de nombreuses applications cela devient impossible en raison du trop grand nombre de « jets » et de « bulles ». De plus, on rencontre des difficultés numériques y compris pour le calcul d'une instabilité isolée (Liska and Wendroff, 2004). Dans ce manuscrit, nous abordons le problème de la modélisation des zones de mélange avec des modèles multiphasiques. Cela pose un sérieux problème de modélisation pour des écoulements évoluant d'une situation où l'interface est bien définie (une seule vitesse) vers une configuration de mélange de fluides à plusieurs vitesses. Cette question a été abordée par Besnard and Harlow (1988), Youngs et al. (1989), Chen et al. (1996), Glimm et al. (1999), Saurel et al. (2003) par exemple. / Multiphase mixtures with velocity disequilibrium are usually modelled with 6 or 7 equations models (Baer and Nunziato, 1986). These models are very efficient to model mixtures with velocity drift effects. They can also be used to model interfacial flows where the respect of interface conditions (continuous normal velocity and pressure) is mandatory. Such aim is usually achieved with the help of stiff mechanical relaxation solvers (Saurel and Abgrall, 1999). Another option is to use single pressure and single velocity models (Kapila et al., 2001). However, many applications involve unstable fluid-fluid interfaces for which flow conditions range from well separated fluids to fully mixed ones. The usual way to deal with these turbulent mixing zones is to use a single velocity flow model and to resolve spatially the various instabilities. However, spatial resolution of these instabilities in many applications is impossible as too many ‘jets' and ‘bubbles' are present. Also, numerical difficulties and large inaccuracies are present even for an isolated instability computation (Liska and Wendroff, 2004). In this work, we address the issue of mixing zone modelling with multiphase flow models. This poses the serious difficulty of model derivation for flows conditions ranging from well defined interfaces (single velocity) to fluid mixtures evolving with several velocities. This issue has been addressed by Besnard and Harlow (1988), Youngs et al. (1989), Chen et al. (1996), Glimm et al. (1999), Saurel et al. (2003) to cite a few. In Saurel et al. (2010) an extension of the Kapila et al. (2001) model was done to deal with permeation effects through material interfaces.

Page generated in 0.1189 seconds