• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An examination of the diet and movement patterns of the atlantic cownose ray rhinoptera bonasuswithin a southwest florida estuary

Collins, Angela Barker 01 June 2005 (has links)
Cownose rays are benthic, suction feeders whose foraging activities have been implicated in severe damage to commercial shellfish industries and seagrass habitat. With jaws highly modified for durophagy, it has been assumed that they are crushing specialists, feeding primarily upon hard molluscan prey. In addition, R. bonasus are believed to be highly migratory, transient residents of coastal inshore waters. However, minimal quantitative data exist regarding R. bonasus feeding or movement patterns in the Gulf of Mexico. Stomach contents from 50 cownose rays caught within the Charlotte Harbor estuary between July 2003 and July 2004 were analyzed using the index of relative importance (IRI). Crustaceans, polychaetes, and bivalves were the dominant groups present, with bivalves representing the smallest proportion of the three dominant groups. High dietary overlap was observed between sexes, size groups and seasons. Shoalmates exhibited significantly more similar diets to each other than to members of other shoals. Although currently believed to be a hard prey specialist, these results suggest the cownose ray may behave as an opportunistic generalist, consuming any readily available prey. Between July 2003 and November 2004, 21 cownose rays were tagged and tracked within Charlotte Harbor using passive acoustic telemetry. Residence time ranged between 1-102 days. No significant relationship was detected between activity patterns and tidal stage or time of day. Minimum convex polygons (MCP) and kernel utilization distributions (KUD) were calculated to demonstrate the extent of an animals home range and core areas of use. Daily MCPs ranged between 0.01 and 25.8 km2, and total MCPs ranged between 0.81 and 71.78 km2. Total 95% KUDs ranged between 0.18 and 62.44 km2, while total 50% KUDs were significantly smaller, ranging from 0.09 to 9.68 km2.
2

Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging

Neumann, Markus 25 February 2014 (has links) (PDF)
Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient's body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based workflow is proposed and refined for automatic image plane alignment. An automatic tracking workflow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking workflow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the workflow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the workflow was evaluated with both computer simulations and experiments using an MR compatible testbed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor.
3

Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging / Suivi temps-réel automatique multimodal pour l'alignement des plans de coupe en IRM interventionnelle

Neumann, Markus 25 February 2014 (has links)
En imagerie par résonance magnétique (IRM) interventionnelle, des interventions percutanées minimalement-invasives (biopsies, ablations de tumeurs,...) sont réalisées sous guidage IRM. Lors de l’intervention, les plans de coupe acquis sont alignés sur l’outil chirurgical et les régions anatomiques d’intérêt afin de surveiller la progression de l’outil dans le corps du patient en temps réel. Le suivi d’objets dans l’IRM facilite et accélère les interventions guidées par IRM en permettant d’aligner automatiquement les plans de coupe avec l’outil chirurgical. Dans cette thèse, un système d’alignement automatique des plans de coupe établi sur une séquence IRM clinique est développé. Celui-ci réalise automatiquement la détection et le suivi d’un marqueur passif directement dans les images IRM tout en minimisant le temps d’imagerie dédié à la détection. L’inconvénient principal de cette approche est sa dépendance au temps d’acquisition de la séquence IRM clinique utilisée. Dans un premier temps, les performances du suivi ont pu être améliorées grâce à l’estimation et la prédiction du mouvement suivi par un filtre de Kalman. Puis un capteur optique complémentaire a été ajouté pour réaliser un suivi multi-capteurs, découplant ainsi la fréquence de rafraichissement du suivi de la fréquence de rafraichissement des images IRM. La performance du système développé a été évaluée par des simulations et des expériences utilisant un banc d’essai compatible IRM. Les résultats montrent une bonne robustesse du suivi multi-capteurs pour l’alignement des plans de coupe grâce à la combinaison des qualités individuelles de chaque capteur. / Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient’s body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based workflow is proposed and refined for automatic image plane alignment. An automatic tracking workflow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking workflow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the workflow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the workflow was evaluated with both computer simulations and experiments using an MR compatible testbed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor.

Page generated in 0.0618 seconds