• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 1
  • Tagged with
  • 34
  • 34
  • 33
  • 19
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Geotechnical Behaviour of Frozen Mine Backfills

Han, Fa Sen 28 September 2011 (has links)
This thesis presents the results of an investigation of factors which influence the geotechnical properties of frozen mine backfill (FMB). FMB has extensive application potential for mining in permafrost areas. The uniaxial compressive strength (UCS) of hardened backfill is often used to evaluate mine backfill stability. However, the deformation behaviour and stiffness of the FMB are also key design properties of interest. In this thesis, uniaxial compressive tests were conducted on FTB and FCPB samples. Information about the geotechnical properties of FMB is obtained. The effects of FMB mix components and vertical compression pressure on the geotechnical properties of FMB are discussed and summarized. An optimum total water content of 25%-35% is found in which the strength and the modulus of elasticity of the FTB are 1.4-3.2 MPa and 35-58 MPa, respectively. It is observed that a small amount (3-6%) of cement can significantly change the geotechnical properties of FTB.
12

Geotechnical Behaviour of Frozen Mine Backfills

Han, Fa Sen 28 September 2011 (has links)
This thesis presents the results of an investigation of factors which influence the geotechnical properties of frozen mine backfill (FMB). FMB has extensive application potential for mining in permafrost areas. The uniaxial compressive strength (UCS) of hardened backfill is often used to evaluate mine backfill stability. However, the deformation behaviour and stiffness of the FMB are also key design properties of interest. In this thesis, uniaxial compressive tests were conducted on FTB and FCPB samples. Information about the geotechnical properties of FMB is obtained. The effects of FMB mix components and vertical compression pressure on the geotechnical properties of FMB are discussed and summarized. An optimum total water content of 25%-35% is found in which the strength and the modulus of elasticity of the FTB are 1.4-3.2 MPa and 35-58 MPa, respectively. It is observed that a small amount (3-6%) of cement can significantly change the geotechnical properties of FTB.
13

Geotechnical Behaviour of Frozen Mine Backfills

Han, Fa Sen January 2011 (has links)
This thesis presents the results of an investigation of factors which influence the geotechnical properties of frozen mine backfill (FMB). FMB has extensive application potential for mining in permafrost areas. The uniaxial compressive strength (UCS) of hardened backfill is often used to evaluate mine backfill stability. However, the deformation behaviour and stiffness of the FMB are also key design properties of interest. In this thesis, uniaxial compressive tests were conducted on FTB and FCPB samples. Information about the geotechnical properties of FMB is obtained. The effects of FMB mix components and vertical compression pressure on the geotechnical properties of FMB are discussed and summarized. An optimum total water content of 25%-35% is found in which the strength and the modulus of elasticity of the FTB are 1.4-3.2 MPa and 35-58 MPa, respectively. It is observed that a small amount (3-6%) of cement can significantly change the geotechnical properties of FTB.
14

Liquefaction of Early Age Cemented Paste Backfill

Saebimoghaddam, Abdolreza 01 September 2010 (has links)
Modern mines require systems that quickly deliver backfill to support the rock mass surrounding underground openings. Cemented Paste Backfill (CPB) is one such backfilling method, but concerns have been raised about CPB’s liquefaction susceptibility especially when the material has just been placed, and if it is exposed to earthquakes or large mining induced seismic events. Conventional geotechnical earthquake engineering for surface structures is now relatively advanced and well accepted, and so the objective of this thesis is to consider how that framework might be extended to assess the liquefaction potential of CPB. Seismic records were analyzed for earthquakes and for large mining induced events. Important seismological trends were consistent for rockbursts and earthquakes when the signals were recorded at distances as proximate as one kilometre, suggesting that the conventional earthquake engineering approach might plausibly be adapted for such design situations. For production blasts and for more proximate locations to rockbursts, much higher frequencies dominate and therefore new design methods may be required. Monotonic triaxial tests conducted on normally consolidated uncemented mine tailings demonstrated that the material is initially contractive up to a phase transition point, beyond which dilation occurs. Most importantly the material never exhibits unstable strain softening behaviour in compression, and only temporary or limited liquefaction in extension. The addition of 3% binder results in initial sample void ratios that are even higher than their uncemented counterparts, and yet the material friction is slightly enhanced when tested at 4 hours cure. These results suggest that the flow liquefaction phenomenon commonly associate with undrained loose sand fills will not occur with paste backfill. Cyclic triaxial test results analyzed in terms of number of cycles to failure for a given cyclic stress ratio exhibited a trend consistent with previous tests on similar materials. However, the addition of 3% binder and testing at 4 hours cure resulted in an order of magnitude larger number of cycles to failure – a surprising and dramatic increase, suggesting good resistance of the material to cyclic mobility. Future research is recommended to build on these results and develop more robust methods for liquefaction assessment of CPB.
15

Electromagnetic Characterization of Cemented Paste Backfill in the Field and Laboratory

Thottarath, Sujitlal 28 July 2010 (has links)
Cemented Paste Backfill (CPB) is a relatively new backfilling technology for which a better understanding of binder hydration is required. This research uses electromagnetic (EM) wave-based techniques to non-destructively study a CPB consisting of tailings, sand, process water and binder (90% blast-furnace slag; 10% Portland cement). EM experiments were performed using a broadband network analyzer (20 MHz to 1.3 GHz) in the lab and capacitance probes (70 MHz) in the lab and field. Results showed that the EM properties are sensitive to curing time, operating frequency and specimen composition including binder content. The volumetric water content interpreted from dielectric permittivity varied little with curing. Temporal variations in electrical conductivity reflected the different stages of hydration. Laboratory results aided interpretation of field data and showed that a reduction in binder content from 4.5% to 2.2% delays setting of CPB from 0.5 days to over 2 days, which has important implications for mine design.
16

Electromagnetic Characterization of Cemented Paste Backfill in the Field and Laboratory

Thottarath, Sujitlal 28 July 2010 (has links)
Cemented Paste Backfill (CPB) is a relatively new backfilling technology for which a better understanding of binder hydration is required. This research uses electromagnetic (EM) wave-based techniques to non-destructively study a CPB consisting of tailings, sand, process water and binder (90% blast-furnace slag; 10% Portland cement). EM experiments were performed using a broadband network analyzer (20 MHz to 1.3 GHz) in the lab and capacitance probes (70 MHz) in the lab and field. Results showed that the EM properties are sensitive to curing time, operating frequency and specimen composition including binder content. The volumetric water content interpreted from dielectric permittivity varied little with curing. Temporal variations in electrical conductivity reflected the different stages of hydration. Laboratory results aided interpretation of field data and showed that a reduction in binder content from 4.5% to 2.2% delays setting of CPB from 0.5 days to over 2 days, which has important implications for mine design.
17

Liquefaction of Early Age Cemented Paste Backfill

Saebimoghaddam, Abdolreza 01 September 2010 (has links)
Modern mines require systems that quickly deliver backfill to support the rock mass surrounding underground openings. Cemented Paste Backfill (CPB) is one such backfilling method, but concerns have been raised about CPB’s liquefaction susceptibility especially when the material has just been placed, and if it is exposed to earthquakes or large mining induced seismic events. Conventional geotechnical earthquake engineering for surface structures is now relatively advanced and well accepted, and so the objective of this thesis is to consider how that framework might be extended to assess the liquefaction potential of CPB. Seismic records were analyzed for earthquakes and for large mining induced events. Important seismological trends were consistent for rockbursts and earthquakes when the signals were recorded at distances as proximate as one kilometre, suggesting that the conventional earthquake engineering approach might plausibly be adapted for such design situations. For production blasts and for more proximate locations to rockbursts, much higher frequencies dominate and therefore new design methods may be required. Monotonic triaxial tests conducted on normally consolidated uncemented mine tailings demonstrated that the material is initially contractive up to a phase transition point, beyond which dilation occurs. Most importantly the material never exhibits unstable strain softening behaviour in compression, and only temporary or limited liquefaction in extension. The addition of 3% binder results in initial sample void ratios that are even higher than their uncemented counterparts, and yet the material friction is slightly enhanced when tested at 4 hours cure. These results suggest that the flow liquefaction phenomenon commonly associate with undrained loose sand fills will not occur with paste backfill. Cyclic triaxial test results analyzed in terms of number of cycles to failure for a given cyclic stress ratio exhibited a trend consistent with previous tests on similar materials. However, the addition of 3% binder and testing at 4 hours cure resulted in an order of magnitude larger number of cycles to failure – a surprising and dramatic increase, suggesting good resistance of the material to cyclic mobility. Future research is recommended to build on these results and develop more robust methods for liquefaction assessment of CPB.
18

Effect of Binder Content and Load History on the One-dimensional Compression of Williams Mine Cemented Paste Backfill

Jamali-Firouz-Abadi, Maryam 21 May 2013 (has links)
Large voids created by underground mining are backfilled to provide regional ground support. This thesis examines using conventional oedometer techniques and electromagnetic (EM) techniques to characterize consolidation and binder hydration in mine backfill so that EM monitoring can be used in the field to provide real-time feedback to operators to optimize the backfilling process. New techniques are given for interpreting the full range of deformation (initial compression, primary and secondary consolidation). Deformation due to initial compression is non-trivial and may have to be accounted for in numerical back-analyses of field case studies. EM parameters are sensitive to binder content, progress of hydration and loss of water caused by consolidation and binder hydration. The integrated interpretation of consolidation and EM behaviours has significant potential impact on real-time monitoring of mine backfill operations, and recommendations are made to advance the technique for this purpose.
19

Effect of Binder Content and Load History on the One-dimensional Compression of Williams Mine Cemented Paste Backfill

Jamali-Firouz-Abadi, Maryam 21 May 2013 (has links)
Large voids created by underground mining are backfilled to provide regional ground support. This thesis examines using conventional oedometer techniques and electromagnetic (EM) techniques to characterize consolidation and binder hydration in mine backfill so that EM monitoring can be used in the field to provide real-time feedback to operators to optimize the backfilling process. New techniques are given for interpreting the full range of deformation (initial compression, primary and secondary consolidation). Deformation due to initial compression is non-trivial and may have to be accounted for in numerical back-analyses of field case studies. EM parameters are sensitive to binder content, progress of hydration and loss of water caused by consolidation and binder hydration. The integrated interpretation of consolidation and EM behaviours has significant potential impact on real-time monitoring of mine backfill operations, and recommendations are made to advance the technique for this purpose.
20

Numerical Analysis of Coal Pillar Stability on Variable Weak Floor with Paste Backfill

Jessu, Kashi Vishwanath 01 December 2016 (has links)
This thesis investigates the stability of coal pillars under realistic conditions of varying weak floor thickness with and without the use of paste backfill. Weak floor strata underlying coal seams are common in the Illinois Basin. They consist mainly of underclay, which is a gray, argillaceous rock that usually occurs immediately beneath beds of coal. Underclay thickness may vary from less than a foot to twenty feet at different locations in the basin (Grim and Allen, 1938). Locally, underclay thickness may vary gradationally over a distance of two pillars. Even though weak floor thickness is not consistent (Gadde, 2009), most research to date has focused on parametric studies with a fixed underclay thickness and formulated coal pillar designs on the basis of the maximum underclay thickness measured in the field. Therefore, it is necessary to investigate more realistic field conditions and quantify the influence of a gradated weak floor thickness using additional parametric studies. This research is primarily numerical modeling incorporating various constitutive models and using some calibration. Therefore, the two dimensional plane strain finite difference model in FLAC 3D is employed to carry out parametric studies on gradated weak floor conditions. Underclay exhibits Mohr Coulomb elastic plastic behavior; hence, the Mohr Coulomb constitutive model is used for the behavior of overburden, coal, and floor. Well-calibrated numerical models can assist in understanding load and failure processes provided that coal, overburden, and weak floor are modeled with sufficient realism. The theoretical approach considers a friction angle of 0° to calculate the load bearing capacity of the weak floor for design of pillars with long-term stability, even if the weak floor has a non-zero friction angle. The stiffness of the weak floor increases with an increase in friction angle (Gadde, 2009; Kostecki and Spearing, 2015). As stiffness increases, a point can be reached where floor bearing capacity exceeds coal pillar strength and coal pillar strength becomes the governing factor. For this scenario, the Mohr Coulomb strain softening model is more realistic in estimating loads carried by coal pillars in the post-failure stage. The three-dimensional Mohr Coulomb strain softening model in FLAC 3D is employed to study qualitatively the floor response in strain softening coal behavior conditions. Maintaining stable coal pillar responses has been a challenge for the coal mining industry due to attempts to increase the primary extraction ratio. Presently, the best available solution seems to be backfilling when considering short-term pillar stability (i.e., less than the long-term factor of safety) with increased extraction ratio. There are various types of mine backfill that have benefits to the mining industry depending on the application, but paste backfill produced from total mill tailings containing no free water is the best option for post-mining ground control in room-and-pillar mines as it prevents weakening of the floor and will not contaminate the ground water. The influence of paste backfill on floor bearing capacity and coal pillar response is studied with numerical modeling using the same constitutive models already identified. Finally, an economic analysis is carried out to look at cost implications of a proposed system with backfill.

Page generated in 0.0548 seconds