• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural production layer decomposition: a new method to measure differences between MRIO databases for footprint assessments

Wieland, Hanspeter, Giljum, Stefan, Bruckner, Martin January 2018 (has links) (PDF)
Recent empirical assessments revealed that footprint indicators calculated with various multi-regional input-output (MRIO) databases deliver deviating results. In this paper, we propose a new method, called structural production layer decomposition (SPLD), which complements existing structural decomposition approaches. SPLD enables differentiating between effects stemming from specific parts in the technology matrix, e.g. trade blocks vs. domestic blocks, while still allowing to link the various effects to the total region footprint. Using the carbon footprint of the EU-28 in 2011 as an example, we analyse the differences between EXIOBASE, Eora, GTAP and WIOD. Identical environmental data are used across all MRIO databases. In all model comparisons, variations in domestic blocks have a more significant impact on the carbon footprint than variations in trade blocks. The results provide a wealth of information for MRIO developers and are relevant for policy makers designing climate policy measures targeted to specific stages along product supply chain.
2

Decomposição de grafos em caminhos / Decomposition of graphs into paths

Botler, Fábio Happ 24 February 2016 (has links)
Uma decomposição de um grafo G é um conjunto D = {H_1,... , H_k } de subgrafos de G dois-a-dois aresta-disjuntos que cobre o conjunto das arestas de G. Se H_i é isomorfo a um grafo fixo H, para 1<=i<=k, então dizemos que D é uma H-decomposição de G. Neste trabalho, estudamos o caso em que H é um caminho de comprimento fixo. Para isso, primeiramente decompomos o grafo dado em trilhas, e depois fazemos uso de um lema de desemaranhamento, que nos permite transformar essa decomposição em trilhas numa decomposição somente em caminhos. Com isso, obtemos resultados para três conjecturas sobre H-decomposição de grafos no caso em que H=P_\\ell é o caminho de comprimento \\ell. Dois desses resultados resolvem versões fracas das Conjecturas de Kouider e Lonc (1999) e de Favaron, Genest e Kouider (2010), ambas para grafos regulares. Provamos que, para todo inteiro positivo \\ell, (i) existe um inteiro positivo m_0 tal que se G é um grafo 2m\\ell-regular com m>=m_0, então G admite uma P_\\ell-decomposição; (ii) se \\ell é ímpar, existe um inteiro positivo m_0 tal que se G é um grafo m\\ell-regular com m>=m_0, e G contém um m-fator, então G admite uma P_\\ell-decomposição. O terceiro resultado diz respeito a grafos altamente aresta- conexos: existe um inteiro positivo k_\\ell tal que se G é um grafo k_\\ell-aresta-conexo cujo número de arestas é divisível por \\ell, então G admite uma P_\\ell-decomposição. Esse resultado prova que a Decomposition Conjecture de Barát e Thomassen (2006), formulada para árvores, é verdadeira para caminhos. / A decomposition of a graph G is a set D = {H_1,...,H_k} of pairwise edge-disjoint subgraphs of G that cover the set of edges of G. If H_i is isomorphic to a fixed graph H, for 1<=i<=k, then we say that D is an H-decomposition of G. In this work, we study the case where H is a path of fixed length. For that, we first decompose the given graph into trails, and then we use a disentangling lemma, that allows us to transform this decomposition into one consisting only of paths. With this approach, we tackle three conjectures on H-decomposition of graphs and obtain results for the case H=P_\\ell is the path of length \\ell. Two of these results solve weakenings of a conjecture of Kouider and Lonc (1999) and a conjecture of Favaron, Genest and Kouider (2010), both for regular graphs. We prove that, for every positive integer \\ell, (i) there is a positive integer m_0 such that, if G is a 2m\\ell-regular graph with m>=m_0, then G admits a P_\\ell-decomposition; (ii) if \\ell is odd, there is a positive integer m_0 such that, if G is an m\\ell-regular graph with m>=m_0 containing an m-factor, then G admits a P_\\ell-decomposition. The third result concerns highly edge-connected graphs: there is a positive integer k_\\ell such that if G is a k_\\ell-edge-connected graph whose number of edges is divisible by \\ell, then G admits a P_\\ell-decomposition. This result verifies for paths the Decomposition Conjecture of Barát and Thomassen (2006), on trees.
3

Decomposição de grafos em caminhos / Decomposition of graphs into paths

Fábio Happ Botler 24 February 2016 (has links)
Uma decomposição de um grafo G é um conjunto D = {H_1,... , H_k } de subgrafos de G dois-a-dois aresta-disjuntos que cobre o conjunto das arestas de G. Se H_i é isomorfo a um grafo fixo H, para 1<=i<=k, então dizemos que D é uma H-decomposição de G. Neste trabalho, estudamos o caso em que H é um caminho de comprimento fixo. Para isso, primeiramente decompomos o grafo dado em trilhas, e depois fazemos uso de um lema de desemaranhamento, que nos permite transformar essa decomposição em trilhas numa decomposição somente em caminhos. Com isso, obtemos resultados para três conjecturas sobre H-decomposição de grafos no caso em que H=P_\\ell é o caminho de comprimento \\ell. Dois desses resultados resolvem versões fracas das Conjecturas de Kouider e Lonc (1999) e de Favaron, Genest e Kouider (2010), ambas para grafos regulares. Provamos que, para todo inteiro positivo \\ell, (i) existe um inteiro positivo m_0 tal que se G é um grafo 2m\\ell-regular com m>=m_0, então G admite uma P_\\ell-decomposição; (ii) se \\ell é ímpar, existe um inteiro positivo m_0 tal que se G é um grafo m\\ell-regular com m>=m_0, e G contém um m-fator, então G admite uma P_\\ell-decomposição. O terceiro resultado diz respeito a grafos altamente aresta- conexos: existe um inteiro positivo k_\\ell tal que se G é um grafo k_\\ell-aresta-conexo cujo número de arestas é divisível por \\ell, então G admite uma P_\\ell-decomposição. Esse resultado prova que a Decomposition Conjecture de Barát e Thomassen (2006), formulada para árvores, é verdadeira para caminhos. / A decomposition of a graph G is a set D = {H_1,...,H_k} of pairwise edge-disjoint subgraphs of G that cover the set of edges of G. If H_i is isomorphic to a fixed graph H, for 1<=i<=k, then we say that D is an H-decomposition of G. In this work, we study the case where H is a path of fixed length. For that, we first decompose the given graph into trails, and then we use a disentangling lemma, that allows us to transform this decomposition into one consisting only of paths. With this approach, we tackle three conjectures on H-decomposition of graphs and obtain results for the case H=P_\\ell is the path of length \\ell. Two of these results solve weakenings of a conjecture of Kouider and Lonc (1999) and a conjecture of Favaron, Genest and Kouider (2010), both for regular graphs. We prove that, for every positive integer \\ell, (i) there is a positive integer m_0 such that, if G is a 2m\\ell-regular graph with m>=m_0, then G admits a P_\\ell-decomposition; (ii) if \\ell is odd, there is a positive integer m_0 such that, if G is an m\\ell-regular graph with m>=m_0 containing an m-factor, then G admits a P_\\ell-decomposition. The third result concerns highly edge-connected graphs: there is a positive integer k_\\ell such that if G is a k_\\ell-edge-connected graph whose number of edges is divisible by \\ell, then G admits a P_\\ell-decomposition. This result verifies for paths the Decomposition Conjecture of Barát and Thomassen (2006), on trees.
4

Stack Number, Track Number, and Layered Pathwidth

Yelle, Céline 09 April 2020 (has links)
In this thesis, we consider three parameters associated with graphs : stack number, track number, and layered pathwidth. Our first result is to show that the stack number of any graph is at most 4 times its layered pathwidth. This result complements an existing result of Dujmovic et al. that showed that the queue number of a graph is at most 3 times its layered pathwidth minus one (Dujmovic, Morin, and Wood [SIAM J. Comput., 553–579, 2005]). Our second result is to show that graphs of track number at most 3 have layered pathwidth at most 4. This answers an open question posed by Banister et al. (Bannister, Devanny, Dujmovic, Eppstein, and Wood [GD 2016, 499–510, 2016, Algorithmica, 1–23, 2018]).
5

On the Correlation of Maximum Loss and Maximum Gain of Stock Price Processes

Vardar, Ceren 11 December 2008 (has links)
No description available.

Page generated in 0.0817 seconds