• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 36
  • 13
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 177
  • 177
  • 31
  • 27
  • 22
  • 17
  • 16
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Bacterial invasion in hard tissues of periodontally diseased teeth structural and cultural studies /

Adriaens, Patrick A. January 1900 (has links)
Thesis (doctoral)--Rijksuniversiteit te Gent, 1988. / Summary in Dutch and English. Includes bibliographical references.
42

Molecular characterization of a rare bacterial pathogen causing psoas abscess

Yim, Tak-ching. January 2003 (has links)
Thesis (M.Med.Sc.)--University of Hong Kong, 2003. / Includes bibliographical references (leaves 29-35). Also available in print.
43

Bacterial invasion in hard tissues of periodontally diseased teeth structural and cultural studies /

Adriaens, Patrick A. January 1900 (has links)
Thesis (doctoral)--Rijksuniversiteit te Gent, 1988. / Summary in Dutch and English. Includes bibliographies.
44

Studies of the lipopolysaccharide from the intracellular pathogens Francisella tularensis and Francisella novicida

Cowley, Siobhán Clare 30 August 2017 (has links)
Francisella tularensis and Francisella novicida are closely related facultative intracellular pathogens capable of survival and growth within macrophages. In this work we present evidence to show that F. tularensis uses phase variation to alter lipopolysaccharide (LPS) antigenicity, macrophage nitric oxide (NO) production, and microbial intramacrophage growth. The LPS and lipid A of F. tularensis LVS fail to stimulate production of significant levels of nitric oxide by rat macrophage monolayers. However, spontaneous variants of F. tularensis expressing an antigenically distinct LPS induce rat macrophages to produce increased levels of NO, thereby suppressing intracellular growth. This new form of LPS produced by F. tularensis is also the predominant form of LPS found normally in F. novicida. Rat macrophages infected with F. novicida produce high levels of NO and exhibit suppression of intracellular growth. LPS and lipid A isolated from F. novicida and variants of F. tularensis stimulate increased levels of NO production. In addition, a reverse phase shift can occur which returns the LPS of the F. tularensis variants to the original antigenic form, resulting in reduced macrophage NO production and restoration of intracellular growth. These results suggest that F. tularensis can modulate macrophage NO production through phase variation of its LPS. It was of interest to initiate a study that would ultimately characterize the molecular mechanism of LPS phase variation in Francisella tularensis . To this end, we used shuttle mutagenesis to create a mutant library of F. novicida. We mutagenized a size- restricted plasmid library of F. novicida with the erythromycin- resistant transposon TnMax2. Putative F. novicida LPS mutants created by shuttle mutagenesis were screened visually for aberrant colony phenotypes on agar plates. Of 10464 mutants screened, 5 unique F. novicida LPS mutants were isolated which exhibit three distinct LPS phenotypes as determined by Western immunoblot. A single mutant from each of the three phenotypic groups was further characterized with respect to DNA sequence analysis, intramacrophage growth, and sensitivity to detergent and serum complement. Furthermore, these three loci were shown to hybridize with a corresponding locus in F. tularensis LVS. However, there was no difference in the restriction pattern of the hybridizing bands between LVS and its LPS phase variants, thus indicating that no major genetic rearrangements or insertion/deletion of a large mobile genetic element occurs in these genes during the phase variation process of F. tularensis. The F. novicida valAB locus has previously been cloned, sequenced, and shown to be functionally homologous to the E. coli genes msbA/lpxK. In order to investigate the hypothesis that valAB is involved in transport of LPS to the cell surface, an E. coli strain harboring an NTG-mutagenized temperature sensitive (t.s.) allele of valAB, a nonfunctional copy of msbA/lpxK, and an IPTG-inducible copy of the gene encoding the Chlamydia trachomatis genus-specific LPS epitope (gseA) was constructed. In this study, DNA sequencing was used to locate the temperature sensitive mutations in the valAB locus. Two C to T transitions were found in the valA coding region which result in a S to F change at amino acid 543 and a T to I change at amino acid 458. The ability of E. coli cells harboring this t.s. copy of valAB to transport the Chlamydia LPS epitope across the inner membrane at the permissive and non-permissive temperatures was determined using sucrose density gradient centrifugation and ELISA. It was determined that there was increased association of the LPS epitope with the inner membrane at the non-permissive temperature, thus suggesting that ValA is required for transport of an LPS precursor across the inner membrane. / Graduate
45

Detection of Vibrio cholerae and Vibrio parahaemolyticus by molecular and culture methods from source water to household container-stored water at the point-of-use in rural Vhembe communities in South Africa

Ntema, Vusi McMillan 25 March 2010 (has links)
M.Tech. / With the recent cholera outbreak in Zimbabwe and the outbreak taking a sub-regional dimension with cholera cases being reported from neighbouring countries like Botswana and South Africa, there was a need to monitor drinking water from environmental water sources as well as household water-storage containers at the point-of-use in rural communities. Although conventional culture-based microbiological methods for the identification of Vibrio species from environmental water samples are reliable, they require several days to complete (Khan and Cerniglia, 1994). Culture dependent and culture independent methods for the detection of Vibrio cholerae and Vibrio parahaemolyticus from water samples were optimised during the current study. With these methods, the occurrence and distribution of V. cholerae and V. parahaemolyticus in source waters as well as in household container stored-waters at the point-of-use in the Nwanedi Catchment, was determined. The culture based approach analyses involved the enrichment of water samples in alkaline peptone water (APW) for 18 hours at 37°C followed by culture on selective thiosulfate-citrate-bile salts-sucrose (TCBS) agar. Typical colonies on TCBS agar were confirmed using the API 20NE as well as the two multiplex polymerase chain reactions (m-PCR). The culture independent PCR approach was done by filtering 100 ml of the water sample onto polycarbonate membranes followed by DNA extraction from the bacteria captured on the membranes using an adaptation of the in-house DNA extraction method used in the laboratory. This DNA was used as template for the m-PCR’s. For the culture based PCR detection, 100 ml water was filtered onto nitrocellulose membranes followed by 18 hours enrichment in APW. DNA was then extracted from the enrichment broth and subsequently used as template for the m-PCR’s. All water samples were analysed with all three methods to compare the results and determine the most effective method for the detection of the two-selected Vibrio species present in water samples. PCR analyses were performed using two m-PCR assays targeting the SodB (V. cholerae species), FlaE (V. parahaemolyticus species) and 16S rRNA (Vibrio and Enterobacteriacea species) genes (Multiplex 1) and the V. cholerae O1 and V. cholerae O139 rfb genes, ctxA (cholera toxin) gene and 16S rRNA gene (Multiplex 2). The 16S rRNA primers were included in the Multiplex PCR’s as an internal control. The m-PCR assays were 100% specific for total and toxigenic V. cholerae and total V. parahaemolyticus when using target bacteria and various other non-target bacteria. The m-PCR assays when coupled with an 18 hours enrichment step could detect as few as 4-10 V. cholerae and V. parahaemolyticus cells in pure cultures as well as in spiked environmental water samples. Fifty water-storage containers and 56 environmental water samples (river, spring and borehole) from rural households in the Vhembe district of the Limpopo Province of South Africa were tested for the presence of selected Vibrio’s, using (1) the standard culture based approach, (2) PCR detection without enrichment and (3) PCR with a brief pre-enrichment. Container water samples were collected before [referred to as free volume (FV) of water] and after dislodging of the biofilm [referred to as dislodged biofilm (BD)] from the inner sidewalls of containers. Of the samples analysed with the standard cultured based technique combined with colony confirmation using m-PCR 1, 34 (12.8%) tested positive for the presence of V. cholerae (SodB gene), 2 (1.3%) for the presence of V. parahaemolyticus (FlaE gene) and all the samples tested positive for the 16S rRNA gene. In contrast, only 1 (0.6%) tested positive for the presence of V. cholerae and 0 (0%) for the presence of V. parahaemolyticus when the isolates were confirmed with API 20NE. With the culture dependant PCR method, 65 (41.7%) of the samples tested positive for the presence of V. cholerae, 3 (1.9%) for the presence of V. parahaemolyticus and all the samples tested positive for the 16S rRNA gene. Seventeen (10.9%) of the samples tested positive for the presence of V. cholerae (SodB) and 16S rRNA genes, 0 (0%) for the presence of V. parahaemolyticus (FlaE gene) with the culture independent direct PCR detection protocol. All the samples that tested positive for V. cholerae with any of the three methods were tested for the presence of toxigenic V. cholerae species with the second multiplex PCR. Six of the source water samples tested positive for V. cholerae O1 as well as the cholera toxin genes. Of the 56 source water samples, 14 (25%) were positive for V. cholerae and 0 (0%) were positive for V. parahaemolyticus with one or all of the methods. Six (10.7%) of the V. cholerae positive samples tested positive for V. cholerae O1 rfb gene, and ctxA gene (cholera toxin). Thirty (60%) of the 50 FV and 28 (56%) of the DB water samples tested positive for V. cholerae, and 3 (6%) of the FV and 0 (0%) of the DB samples tested positive for V. parahaemolyticus with one or all of the methods. None of the positive V. cholerae samples tested positive for the presence of toxigenic V. cholerae. The results presented suggest that the use of culture-based techniques alone is inadequate for detection of selected Vibrio’s in the environmental water samples and that such techniques are not enough to guarantee satisfactory protection of human health. The combination of filtration, enrichment, DNA extraction and m-PCR method provide a sensitive and specific method for the detection of V. cholerae and V. parahaemolyticus in environmental water samples. This method proved to be the most effective for detection and identification of selected Vibrio’s when compared to the culture based method and PCR without enrichment method. The inclusion of an enrichment period allows for the detection of culturable bacteria which is crucial as PCR detection does not give indications on the viability of the detected material. The enrichment period will also dilute any inhibitors for the m-PCR’s that may be present. Detection of V. cholerae and V. parahaemolyticus in the source water used by the population and in the water-storage containers indicates possible seeding of containers with Vibrio species from the source water. Furthermore, the detection of these organisms in DB samples indicates that these organisms attach to containers’ inner sidewalls, forming biofilms, further sustaining their occurrence and proliferation. The detection of V. cholerae and V. parahaemolyticus in household water-storage containers certainly places the consumers at risk of infection of diseases caused by these organisms.
46

Characterization of a putative pilus assembly and secretion system in Pseudomonas aeruginosa DSM 1707

Van Schalkwyk, Antoinette 01 June 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Microbiology))--University of Pretoria, 2005. / Microbiology and Plant Pathology / unrestricted
47

Magnetic Nanosensors For Multiplexed Bacterial Pathogenesis Identification

Kaittanis, Charalambos 01 January 2010 (has links)
Developing diagnostic modalities that utilize nanomaterials and miniaturized detectors can have an impact in point-of-care diagnostics. Diagnostic systems that (i) are sensitive, robust, and portable, (ii) allow detection in clinical samples, (iii) require minimal sample preparation yielding results quickly, and (iv) can simultaneously quantify multiple targets, would have a great potential in biomedical research and public healthcare. Bacterial infections still cause pathogenesis throughout the world (Chapter I). The emergence of multi-drug resistant strains, the potential appearance of bacterial pandemics, the increased occurrence of bacterial nosocomial infections, the wide-scale food poisoning incidents and the use of bacteria in biowarfare highlight the need for designing novel bacterial-sensing modalities. Among the most prominent disease-causing bacteria are strains of Escherichia coli, like the E. coli O157:H7 that produces the Shiga-like toxin (Stx). Apart from diarrheagenic E. coli strains, others cause disease varying from hemolytic uremic syndrome and urinary tract infections to septicemia and meningitis. Therefore, the detection of E. coli needs to be performed fast and reliably in diverse environmental and clinical samples. Similarly, Mycobacterium avium spp. paratuberculosis (MAP), a fastidious microorganism that causes Johne's disease in cattle and has been implicated in Crohn's disease (CD) etiology, is found in products from infected animals and clinical samples from CD patients, making MAP an excellent proof-of-principle model. Recently, magnetic relaxation nanosensors (MRnS) provided the first applications of improved diagnostics with high sensitivity and specificity. Nucleic acids, proteins, viruses and enzymatic activity were probed, yet neither large targets (for instance iv bacterial and mammalian cells) nor multiple bacterial disease parameters have been simultaneously monitored, in order to provide thorough information for clinical decision making. Therefore, the goal of this study was to utilize MRnS for the sensitive identification of multiple targets associated with bacterial pathogenesis, while monitoring virulence factors at the microorganism, nucleic acid and virulence factor levels, to facilitate improved diagnosis and optimal treatment regimes. To demonstrate the versatility of MRnS, we used MAP as our model system, as well as several other pathogens and eukaryotic cell lines. In initial studies, we developed MRnS suitable for biomedical applications (Chapter II). The resulting MRnS were composed of an iron oxide core, which was caged within a biodegradable polymeric coating that could be further functionalized for the attachment of molecular probes. We demonstrated that depending on the polymer used the physical and chemical properties of the MRnS can be tailored. Furthermore, we investigated the role of polymer in the enzyme-mimicking activity of MRnS, which may lead to the development of optimized colorimetric in vitro diagnostic systems such as immunoassays and small-molecule-based screening platforms. Additionally, via facile conjugation chemistries, we prepared bacterium-specific MRnS for the detection of nucleic acid signatures (Chapter III). Considering that MAP DNA can be detected in clinical samples and isolates from CD patients via laborious isolation and amplification procedures requiring several days, MRnS detected MAP's IS900 nucleic acid marker up to a single MAP genome copy detection within 30 minutes. Furthermore, these MRnS achieved equally fast IS900 detection even in crude DNA extracts, outperforming the gold standard diagnostic method of nested Polymerase Chain v Reaction (nPCR). Likewise, the MRnS detected IS900 with unprecedented sensitivity and specificity in clinical isolates obtained from blood and biopsies of CD patients, indicating the clinical utility of these nanosensors. Subsequently, we designed MRnS for the detection of MAP via surface-marker recognition in complex matrices (Chapter III). Milk and blood samples containing various concentrations of MAP were screened and quantified without any processing via MRnS, obtaining dynamic concentration-dependent curves within an hour. The MAP MRnS were able not only to identify their target in the presence of interferences from other Gram positive and Gram negative bacteria, but could differentiate MAP among other mycobacteria including Mycobacterium tuberculosis. In addition, detection of MAP was performed in clinical isolates from CD patients and homogenized tissues from Johne's disease cattle, demonstrating for the first time the rapid identification of bacteria in produce, as well as clinical and environmental samples. However, comparing the unique MAP quantification patterns with literatureavailable trends of other targets, we were prompted to elucidate the underlying mechanism of this novel behavior (Chapter IV). We hypothesized that the nanoparticle valency – the amount of probe on the surface of the MRnS – may have modulated the changes in the relaxation times (ΔΤ2) upon MRnS – target association. To address this, we prepared MAP MRnS with high and low anti-MAP antibody levels using the same nanoparticle formulation. Results corroborated our hypothesis, but to further bolster it we investigated if this behavior is target-size-independent. Hence utilizing small-moleculeand antibody-carrying MRnS, we detected cancer cells in blood, observing similar detection patterns that resembled those of the bacterial studies. Notably, a single cancer vi cell was identified via high-valency small-molecule MRnS, having grave importance in cancer diagnostics because a single cancer cell progenitor in circulation can effectively initiate the metastatic process. Apart from cells, we also detected the Cholera Toxin B subunit with valencly-engineered MRnS, observing similar to the cellular targets' diagnostic profiling behavior. Finally, as bacterial drug resistance is of grave healthcare importance, we utilized MRnS for the assessment of bacterial metabolism and drug susceptibility (Chapter V). Contrary to spectophotometric and visual nanosensors, their magnetic counterparts were able to quickly assess bacterial carbohydrate uptake and sensitivity to antibiotics even in blood. Two MRnS-based assay formats were devised relying on either the Concanavalin A (Con A)-induced clustering of polysaccharide-coated nanoparticles or the association between free carbohydrates and Con A-carrying MRnS. Overall, taking together these results, as well as those on pathogen detection and the recent instrumentation advancements, the use of MRnS in the clinic, the lab and the field should be anticipated.
48

Novel antimicrobial films based on ethylene-vinyl alcohol copolymers for food packaging application

Muriel Galet, Virginia 16 January 2016 (has links)
Tesis por compendio / This PhD dissertation thesis has been focus on the development and characterization of antimicrobial packaging films based on the incorporation in the polymer matrix or on the attachment to the film surface of naturally occurring antimicrobial compounds with the purpose of inhibiting the proliferation of microorganisms and extend the microbiological shelf life of packaged food products. The studied active films are based on the use of ethylene vinyl copolymers (EVOH) containing 29% (EVOH29) or 44% (EVOH44) molar percentage of ethylene as polymeric vehicle for the incorporation of several antimicrobial compounds -oregano essential oil (OEO), citral, ethyl lauroyl arginate (LAE), epsilon-polylysine (EPL), green tea extract (GTE) and lysozyme. These antimicrobial agents have been incorporated in the film-forming solution or immobilized to the film surface by covalent bonding. Prior to the preparation of the active films, the antimicrobial activity of the selected compounds against selected microorganism was demonstrated, confirming that they could be good candidates to be used as preservatives for active food packaging applications, and an alternative to synthetic additives. The effect of the incorporation of the antimicrobial agents on relevant functional properties of the developed EVOH films was studied. In general, the polymer properties as materials for food packaging were not relevantly affected. In order to evaluate the potential of EVOH matrices as sustain release systems of active compounds, the release kinetics of the active compounds from the film to different media was evaluated; for that the agent release rate and extend into food simulants was monitored, and it was concluded that the agent concentration, release temperature, type of EVOH, interaction of EVOH with the food simulant, and the solubility of the active compound in the release media were the main controlling factors. EVOH matrices have also shown good properties to be used for the attachment of active molecules. In this regard, lysozyme was successfully immobilized on the film surface of EVOH. Several experiments were conducted to determine the antimicrobial properties of the resulting films in vitro against different microorganisms responsible for foodborne illness and in vivo with real foods –minimally-process salad, infant milk, surimi sticks and chicken stock- to enhance their preservation. All the materials presented a strong in vitro antimicrobial activity. Although the results obtained through in vivo tests showed activity reductions caused by food matrix effects, all materials presented significant microbial inhibition and, therefore, great potential to be used in the design of active food packaging. They can be applied as an inner coating of the packaging structure, releasing the active agent or acting by direct contact, producing a great protection against contamination with a prolongation of the microbiological food shelf life. / Muriel Galet, V. (2015). Novel antimicrobial films based on ethylene-vinyl alcohol copolymers for food packaging application [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48522 / Premios Extraordinarios de tesis doctorales / Compendio
49

Studies on ozone initiated inactivation of pathogenic bacteria in aqueous systems

January 2008 (has links)
The effect of ozone on the inactivation of two Gram-negative strains (Escherichia coli and Pseudomonas aeruginosa) and one Gram-positive endospore (Bacillus subtilis) bacteria, often present in water and the cause of some waterborne diseases was investigated as a function of ozone concentration and ozonation duration. Ozone was generated in situ using corona discharge methods where the ozone concentration ranged from 0.906 - 4.724 mg/L and the inactivation of the three microbes followed pseudo-first order kinetics with respect to the microbes. Three microbes were cultured and the influence of temperature and pH of the aqueous systems on the ozone initiated inactivation rate of the three microbes was also investigated. This study reports that molecular ozone is more effective than hydroxyl radicals initiated by the ozone chain reactions. Two suggested mechanisms for the antimicrobial effectiveness of ozone in water systems from the literature is discussed. The study also found that ozonation significantly decreased the Biological Oxygen Demand (BOD) value of natural water. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2008.
50

Modified tethered bilayer lipid membranes for detection of pathogenic bacterial toxins and characterization of ion channels

Thet, Naing Tun January 2010 (has links)
Pathogenic bacteria secrete various virulence factors as their biochemical weapons to gain access to and destroy the target cells. They can directly interact with the outer lipid bilayer membrane of eukaryotic cells, inducing the premature cell death by either apoptosis or necrosis. Such virulence factors account for much of the toxic actions associated with bacterial infection; therefore the detection of such proteins could provide a methodology for sensing/detection of pathogenic bacteria in, for example, food or human tissue. Detection and identification of pathogenic bacteria by conventional methods such as plating and counting in laboratory is expensive and time consuming. With growing concerns over emergence and re-emergence of pathogenic bacteria with high resistant to current antibiotics, there is a potential need for effective detection of pathogenic toxins invitro. On the other hand, artificially prepared lipid bilayer membrane on planar metallic surfaces provides the cell membrane mimics which are extremely useful in exploring the cellular functions and processes at the molecular level. Therefore in this work, an application of planar tethered bilayer lipid membrane (pTBLM) as a biomimetic sensing platform for the detection of clinically important pathogens, Staphylococcus aureus and Pseudomonas aeruginosa via their secreted virulence factors was presented. Planar TBLM was modified by incorporation of cholesterol and detection of bacterial toxins at human body temperature was examined by impedance and surface plasmon resonance methods. The results of pathogenic bacterial toxin detection were compared with those of Escherichia coli (DH5α), the human gut normal flora with non-pathogenic strain, as a control. Additionally pTBLM was transferred onto single nanoporous Si3N4 membrane to enhance the toxin sensitivity and extend the lifetime for the possible realization of future membrane chips for ion channel characterizations and drug screenings. Then the single ion channel measurement was demonstrated with nanopore-suspended TBLM (Nano-psTBLM) using α-toxin of S. aureus. The results presented in this work therefore, may pave the more effective and efficient ways for future pathogenic bacterial detection in which the sensing mechanism was solely based on the nature of interactions as well as modes of action between bacterial toxins and artificial lipid bilayer membranes.

Page generated in 0.0964 seconds