Spelling suggestions: "subject:"bmr"" "subject:"pbmr""
21 |
Deflection of Ag-atoms in an inhomogeneous magnetic fieldKheswa, Bonginkosi Vincent 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: In the current design of the high temperature gas cooled reactor, a small fraction of
coated fuel particles will be defective. Hence, 110Ag may be released from the fuel
spheres into the coolant gas (helium) and plate out on the cooler surfaces of the main
power system. This poses a radiation risk to operating personnel as well as general
public.
The objectives of this thesis were to design and construct an apparatus in which
silver-109 atoms may be produced and deflected in an inhomogeneous and
homogeneous magnetic field, compare experimental and theoretical results, and make
a recommendation based on the findings of this thesis to the idea of removing silver-110 atoms from the helium fluid by deflecting them with an inhomogeneous magnetic
field onto target plates situated on the inner perimeter of a helium pipe.
The experimental results for the deflection of the collimated Ag- atoms with the
round-hole collimators showed a deflection of 1.77° and 2.05° of the Ag- atoms due to
an inhomogeneous magnetic field when the target plate was positioned 13 and 30 mm
away from the magnet, respectively. These values were considerably greater than 0.01° and 0.02° that were calculated for the average velocity
of atoms, v = 500 m/s. The case where Ag- atoms were collimated with a pair of slits
and the target plate positioned 13mm away from the magnet showed the following:
An inhomogeneous magnetic field changes the rectangular shape of the beam to a
roughly elliptical shape. The beam of Ag- atoms was not split into two separate beams.
This was caused by the beam of Ag- atoms consisting of atoms travelling at different
speeds. The maximum deflection of Ag- atoms was 1.16° in the z direction and 1.12°
in the x direction. These values were also significantly greater than 0.01 mm calculated
at v = 500 m/s. This huge difference between the theoretical and experimental results
raised a conclusion that the size of each Ag deposit depended mostly on the exposure
time that was given to it. It was noticed that the beam of Ag- atoms was not split into
two separate beams, in both cases.
The conclusion was that the technique of removing Ag- atoms from the helium stream
by means of an inhomogeneous magnetic field may not be effective. This is due to the
inability of the inhomogeneous magnetic field to split the beam of Ag- atoms into two
separate beams in a vacuum of ~10-5 mbar. It would be even more difficult for an
inhomogeneous magnetic field to split the beam of Ag- atoms in helium, due to the
Ag- atoms having a shorter mean free path in helium compared to a vacuum. / AFRIKAANSE OPSOMMING: In die huidige ontwerp van die hoë temperatuur gas afgekoelde reaktor, is 'n klein fraksie van omhulde brandstof deeltjies foutief. 110Ag kan dus vrygestel word vanaf die brandstof sfere in die verkoelingsgas (helium) wat dan op die koeler oppervlaktes van die hoofkragstelsel presipiteer. Hierdie 110Ag deeltjies hou 'n bestraling risiko vir die bedryfpersoneel sowel as vir die algemene publiek in. Die doelwitte van hierdie verhandeling is eerstens om 'n apparaat te ontwerp en konstrueer wat silwer-109 atome produseer en nie-homogene en homogene magnetiese velde deflekteer,. Tweedens om die eksperimentele en teoretiese resultate met mekaar te vergelyk. Derdens om 'n aanbeveling te maak gebasseer op die bevindinge van hierdie verhandeling rakende die verwydering van silwer-110 atome uit die helium vloeistof deur hulle met 'n nie-homogene magneetveld te deflekteer op die teikenplate binne-in 'n helium pyp. Die eksperimentele resultate vir die defleksie van die gekollimeerde Ag-atome met die ronde gat kollimators toon ‘n defleksie van 1.77° en 2.05° van die Ag-atome as gevolg van ‘n nie-homogene magneetveld wanneer die teikenplaat 13mm en 30mm, onderskeidelik, vanaf die magneet geposisioneer is. Hierdie waardes is aansienlik groter as die teoretiese defleksies van 0.01° en 0.02o wat bereken is vir ‘n gemiddelde snelheid van 500 m/s vir die atome. Die geval waar Ag-atome met 'n paar splete gekollimeer is en die teikenplaat 13 mm weg van magneet geposisioneer is, is die volgende resultate verkry: 'n nie-homogene magneetveld verander die reghoekige vorm van die bondel na 'n rowwe elliptiese vorm. Die bondel Ag-atome is nie volkome twee afsonderlike bundels verdeel nie. Dit is omdat die bondel van Ag-atome bestaan uit atome wat teen verskillende snelhede beweeg. Die maksimum defleksie van Ag-atome is 1.16° in die z-rigting en 1.12° in die x-rigting. Hierdie waardes is ook aansienlik groter as 0.01° bereken teen 500 m/s. Hierdie groot verskil tussen die teoretiese en eksperimentele resultate dui daarop dat die grootte van elke Ag neerslag grootliks afhanklik is van die blootstellingstyd wat daaraan gegee is. Daar is vasgestel dat die straal van Ag-atome in beide gevalle nie in twee afsonderlike bondels verdeel nie.
Die gevolgtrekking is dat die tegniek van die verwydering van Ag-atome uit die helium stroom deur middel van 'n nie-homogene magneetveld nie effektief is nie. Dit is te wyte aan die onvermoë van die nie-homogene magneetveld om die bondel Ag-atome te verdeel in twee afsonderlike bondels in 'n vakuum van ~ 10-5 mbar. Dit sou selfs nog moeiliker vir 'n nie-homogene magnetiese veld wees om die bundel Ag-atome in helium te verdeel, weens die korter gemiddelde beskikbare pad van Ag-atome in helium wanneer dit met 'n vakuum vergelyk word.
|
22 |
Numerical simulation of flow distribution for pebble bed high temperature gas cooled reactorsYesilyurt, Gokhan 30 September 2004 (has links)
The premise of the work presented here is to use a common analytical tool,
Computational Fluid dynamics (CFD), along with a difference turbulence models. Eddy
viscosity models as well as state-of-the-art Large Eddy Simulation (LES) were used to
study the flow past bluff bodies. A suitable CFD code (CFX5.6b) was selected and
implemented.
Simulation of turbulent transport for the gas through the gaps of the randomly
distributed spherical fuel elements (pebbles) was performed. Although there are a
number of numerical studies () on flows around spherical bodies, none of them use the
necessary turbulence models that are required to simulate flow where strong separation
exists. With the development of high performance computers built for applications that
require high CPU time and memory; numerical simulation becomes one of the more
effective approaches for such investigations and LES type of turbulence models can be
used more effectively.
Since there are objects that are touching each other in the present study, a special
approach was applied at the stage of building computational domain. This is supposed to
be a considerable improvement for CFD applications. Zero thickness was achieved
between the pebbles in which fission reaction takes place.
Since there is a strong pressure gradient as a result of high Reynolds Number on
the computational domain, which strongly affects the boundary layer behavior, heat
transfer in both laminar and turbulent flows varies noticeably. Therefore, noncircular
curved flows as in the pebble-bed situatio n, in detailed local sense, is interesting to be
investigated.
Since a compromise is needed between accuracy of results and time/cost of effort
in acquiring the results numerically, selection of turbulence model should be done
carefully. Resolving all the scales of a turbulent flow is too costly, while employing
highly empirical turbulence models to complex problems could give inaccurate
simulation results. The Large Eddy Simulation (LES) method would achieve the
requirements to obtain a reasonable result. In LES, the large scales in the flow are solved
and the small scales are modeled.
Eddy viscosity and Reynolds stress models were also be used to investigate the
applicability of these models for this kind of flow past bluff bodies at high Re numbers.
|
23 |
Simulation of the irradiation behaviour of the PBMR fuel in the SAFARI-1 reactor / B.M. MakgopaMakgopa, Bessie Mmakgoto January 2009 (has links)
Irradiation experiments for the pebble bed modular reactor PBMR fuel (coated fuel particles and pebble
fuel) are planned at the South African First Atomic Reactor Installation (SAFARI-1). The experiments
are conducted to investigate the behavior of the fuel under normal operating and accelerated/accident
simulating conditions because the safe operation of the reactor relies on the integrity of the fuel for
retention of radioactivity.
For fuel irradiation experiments, the accurate knowledge and analysis of the neutron spectrum of the
irradiation facility is required. In addition to knowledge of the neutron spectrum in the irradiation facility,
power distributions and knowledge of nuclear heating values has to be acquired. The SAFARI-1 reactor
boosts operating fluid temperatures of about 300 K. On the contrary, the PBMR can reach temperatures in
up to about 1370 K under normal operating conditions. This calls for design of high temperature
irradiation rigs for irradiation of the PBMR fuel in the SAFARI-1 reactor. The design of this instrument
(rig) should be such that to create an isolated high temperature environment in the SAFARI-1 reactor, to
achieve the requirements of the PBMR fuel irradiation program. The design of the irradiation rig is
planned such that the rig should fit in the existing irradiation channels of the SAFARI-1 reactor, a time
and cost saving from the licensing perspective.
This study aims to establish the know-how of coated particle and pebble modeling in using the Monte
Carlo N-Particle code (MCNP5). The study also aims to establish the know-how of rig design. In this
study, the Necsa in-house code Overall System for the Calculation of Reactors (OSCAR-3), a software
known as OScar 3-Mcnp INTerface (OSMINT) linking OSCAR-3 and MCNP5, also developed at Necsa,
as well as MCNP5 code developed and maintained by the Los Alamos team, are used to calculate
neutronic and power distribution parameters that are important for fuel irradiations and for rig design.
This study presents results and data that can be used to make improvements in the design of the rig or to
confirm if the required operational conditions can be met with the current preliminary rig design. Result
of the neutronic analysis are presented for the SAFARI-1 core, core irradiation channel B6 (where the
PBMR fuel irradiation rig is loaded for the purpose of this study), the rig structure and the pebble fuel are
presented. Furthermore results of the power distribution and nuclear heating values in the reactor core, the
irradiation channel B6, the rig structures and the pebble fuel is also presented.
The loading of the PBMR fuel irradiation rig in core position B6 reduces the core reactivity due to the
fact that the loading of the rig displaces the water moderator in channel B6 introducing vast amounts of
helium. This impacts on the keff value because there will be less neutron thermalization and reproduction
due to the decreased population of thermal neutrons. The rig is found to introduce a negative reactivity
insertion of 46 pcm. The loading of this rig in the core leads to no significant perturbations on the core
power distribution. The core hottest channel is still localized in core channel C6 both with RIG IN and RIG OUT cases. A power tilt is observed, with the south side of the core experiencing reduced assembly
averaged fission power, with correspondingly small compensations from the assemblies on the north side
of the core.
The perturbations on the core assembly averaged fluxes are more pronounced in the eight assemblies
surrounding B6. Core position B6 suffers an 18% neutron flux depression with the loading of the rig. The
fluxes in core positions A5, A6, A7, B5, B7 and C7 are increased when the rig is loading. The largest
increases are noted as 12% in A7, 9% in A6 and 6% in A5 and B7. All the eight core positions
surrounding B6 experience reduced photon fluxes with the loading of the rig. Core position B6 shows a
flux depression of up to 20%, with 10% reduction in core position A6. The remainder seven positions
surrounding B6 shows flux depressions of no more than 5%.
Further on, due to decreased moderation effects, the axial neutron flux in core position B6 is reduced by
20% when the rig is loaded. The energy dependent neutron flux in B6 decreases by 50% in the thermal
energy range with corresponding increases of up to 50% in the resonance and fast energy regions. The
axial and the energy dependent photon flux in core position B6 decreases by up to 20% when the rig is
loaded.
The magnitude of the neutron and photon fluxes is found to have a direct proportion on the neutron and
photon heating values. While the amount of neutron heating in core position B6 increases by one order of
magnitude, when the rig is loaded, the photon heating values increases by up to 60% in the region
spanning ±10cm about the core centerline. The amount of photon heating in the rig structural materials
dominates neutron heating, except in the helium regions of the rig, where neutron heating dominates
photon heating. In the fuel region of the pebble, fission heating (3803W) largely dominates photon heating (119W). / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009
|
24 |
Simulation of the irradiation behaviour of the PBMR fuel in the SAFARI-1 reactor / B.M. MakgopaMakgopa, Bessie Mmakgoto January 2009 (has links)
Irradiation experiments for the pebble bed modular reactor PBMR fuel (coated fuel particles and pebble
fuel) are planned at the South African First Atomic Reactor Installation (SAFARI-1). The experiments
are conducted to investigate the behavior of the fuel under normal operating and accelerated/accident
simulating conditions because the safe operation of the reactor relies on the integrity of the fuel for
retention of radioactivity.
For fuel irradiation experiments, the accurate knowledge and analysis of the neutron spectrum of the
irradiation facility is required. In addition to knowledge of the neutron spectrum in the irradiation facility,
power distributions and knowledge of nuclear heating values has to be acquired. The SAFARI-1 reactor
boosts operating fluid temperatures of about 300 K. On the contrary, the PBMR can reach temperatures in
up to about 1370 K under normal operating conditions. This calls for design of high temperature
irradiation rigs for irradiation of the PBMR fuel in the SAFARI-1 reactor. The design of this instrument
(rig) should be such that to create an isolated high temperature environment in the SAFARI-1 reactor, to
achieve the requirements of the PBMR fuel irradiation program. The design of the irradiation rig is
planned such that the rig should fit in the existing irradiation channels of the SAFARI-1 reactor, a time
and cost saving from the licensing perspective.
This study aims to establish the know-how of coated particle and pebble modeling in using the Monte
Carlo N-Particle code (MCNP5). The study also aims to establish the know-how of rig design. In this
study, the Necsa in-house code Overall System for the Calculation of Reactors (OSCAR-3), a software
known as OScar 3-Mcnp INTerface (OSMINT) linking OSCAR-3 and MCNP5, also developed at Necsa,
as well as MCNP5 code developed and maintained by the Los Alamos team, are used to calculate
neutronic and power distribution parameters that are important for fuel irradiations and for rig design.
This study presents results and data that can be used to make improvements in the design of the rig or to
confirm if the required operational conditions can be met with the current preliminary rig design. Result
of the neutronic analysis are presented for the SAFARI-1 core, core irradiation channel B6 (where the
PBMR fuel irradiation rig is loaded for the purpose of this study), the rig structure and the pebble fuel are
presented. Furthermore results of the power distribution and nuclear heating values in the reactor core, the
irradiation channel B6, the rig structures and the pebble fuel is also presented.
The loading of the PBMR fuel irradiation rig in core position B6 reduces the core reactivity due to the
fact that the loading of the rig displaces the water moderator in channel B6 introducing vast amounts of
helium. This impacts on the keff value because there will be less neutron thermalization and reproduction
due to the decreased population of thermal neutrons. The rig is found to introduce a negative reactivity
insertion of 46 pcm. The loading of this rig in the core leads to no significant perturbations on the core
power distribution. The core hottest channel is still localized in core channel C6 both with RIG IN and RIG OUT cases. A power tilt is observed, with the south side of the core experiencing reduced assembly
averaged fission power, with correspondingly small compensations from the assemblies on the north side
of the core.
The perturbations on the core assembly averaged fluxes are more pronounced in the eight assemblies
surrounding B6. Core position B6 suffers an 18% neutron flux depression with the loading of the rig. The
fluxes in core positions A5, A6, A7, B5, B7 and C7 are increased when the rig is loading. The largest
increases are noted as 12% in A7, 9% in A6 and 6% in A5 and B7. All the eight core positions
surrounding B6 experience reduced photon fluxes with the loading of the rig. Core position B6 shows a
flux depression of up to 20%, with 10% reduction in core position A6. The remainder seven positions
surrounding B6 shows flux depressions of no more than 5%.
Further on, due to decreased moderation effects, the axial neutron flux in core position B6 is reduced by
20% when the rig is loaded. The energy dependent neutron flux in B6 decreases by 50% in the thermal
energy range with corresponding increases of up to 50% in the resonance and fast energy regions. The
axial and the energy dependent photon flux in core position B6 decreases by up to 20% when the rig is
loaded.
The magnitude of the neutron and photon fluxes is found to have a direct proportion on the neutron and
photon heating values. While the amount of neutron heating in core position B6 increases by one order of
magnitude, when the rig is loaded, the photon heating values increases by up to 60% in the region
spanning ±10cm about the core centerline. The amount of photon heating in the rig structural materials
dominates neutron heating, except in the helium regions of the rig, where neutron heating dominates
photon heating. In the fuel region of the pebble, fission heating (3803W) largely dominates photon heating (119W). / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009
|
25 |
Aspects of waste heat recovery and utilisation (WHR&U) in pebble bed modular reactor (PBMR) technologySenda, Franck Mulumba 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The focus of this project was on the potential application of waste heat recovery and utilisation
(WHR&U) systems in pebble bed modular reactor (PBMR) technology. The background theory
provided in the literature survey showed that WHR&U systems have attracted the attention of
many researchers over the past two decades, as using waste heat improves the system
overall efficiency, notwithstanding the cost of extra plant. PBMR waste heat streams were
identified and investigated based on the amount of heat rejected to the environment.
WHR&U systems require specially designed heat recovery equipment, and as such the used
and/or spent PBMR fuel tanks were considered by the way of example. An appropriately
scaled system was designed, built and tested, to demonstrate the functioning of such a
cooling system. Two separate and independent cooling lines, using natural circulation flow in a
particular form of heat pipes called thermosyphon loops were used to ensure that the fuel tank
is cooled when the power conversion unit has to be switched off for maintenance, or if it fails.
A theoretical model that simulates the heat transfer process in the as-designed WHR&U
system was developed. It is a one-dimensional flow model assuming quasi-static and
incompressible liquid and vapour flow. An experimental investigation of the WHR&U system
was performed in order to validate the theoretical model results. The experimental results
were then used to modify the theoretical heat transfer coefficients so that they simulate the
experiments more accurately.
Three energy conversion devices, the dual-function absorption cycle (DFAC), the organic
Rankine cycle (ORC) and the Stirling engine (SE), were identified as suitable for transforming
the recovered heat into a useful form, depending on the source temperatures from 60 ºC to
800 ºC. This project focuses on a free-piston SE with emphasis on the thermo-dynamic
performance of a SE heat exchanger. It was found that a heat exchanger with a copper woven
wire mesh configuration has a relatively large gas-to-metal and metal-to-liquid heat transfer
area. Tube-in-shell heat exchanger configurations were tested, with the working fluid flowing in
ten copper inner pipes, while a coolant flows through the shell tube.
A lumped parameter model was used to describe the thermo-fluid dynamic behaviour of the
SE heat exchanger. In order to validate the theoretical results, a uni-directional flow
experimental investigation was performed. The theoretical model was adjusted so that it
simulated the SE heat exchanger. It was found that after this correction the theoretical model
accurately predicts the experiment. Finally, a dynamic analysis of the SE heat exchanger
experimental set-up was undertaken to show that, although vibrating, the heat exchanger setup
assembly was indeed acceptable from a vibrational and fatigue point of view. / AFRIKAANSE OPSOMMING: Die hoofoogmerk met hierdie projek was die moontlike aanwending van afvalhitteherwinningen-
benutting-(WHR&U-) stelsels in modulêre-gruisbedreaktor-(PBMR-) tegnologie.
Agtergrondteorie in die literatuurondersoek toon dat WHR&U-stelsels al menige navorser se
belangstelling geprikkel het, hetsy vanweë die moontlike ekonomiese voordele wat dit inhou óf
vir besoedelingsvoorkoming, bo-en-behalwe die koste van bykomende toerusting. Die PBMRafvalhittestrome
is ondersoek en bepaal op grond van die hoeveelheid hitte wat dit na die
omgewing vrystel.
Om in die prosesbehoeftes van WHR&U-stelsels te voorsien, moet goed ontwerpte,
doelgemaakte hitteherwinningstoerusting in ʼn verkoelings- en/of verhittingsproses gebruik
word, dus is die PBMR as voorbeeld gebruik vir die konsep. ʼn Toepaslik geskaleerde
WHR&U-stelsel is dus ontwerp, gebou en getoets om die geldigheid van die stelselontwerp te
toon. Twee onafhanklike verkoelingslyne, wat van natuurlike konveksie gebruik maak, in die
vorm van hitte-pype of termoheuwel lusse, was gebruik om te verseker dat verkoeling verskaf
word wanneer die hoof lus breek of instandhouding nodig hê.
ʼn Teoretiese model is ontwikkel wat die hitteoordragproses in die ontwerpte WHR&U-stelsel
simuleer. Dié model was ʼn eendimensionele vloeimodel wat kwasistatiese en
onsamedrukbare vloeistof- en dampvloei in die WHR&U-stelsel-lusse veronderstel. ʼn
Eksperimentele ondersoek is op die WHR&U-stelsel uitgevoer ten einde die teoretiese model
se resultate te bevestig. Die eksperimentele resultate was dus geneem om die teoretiese
hitteoordragkoëffisiënte aan te pas sodat dit die eksperimente kon simuleer.
Drie energieomsettingstoestelle, naamlik die dubbel funksie absorpsie siklus (DFAC), die
organiese Rankine siklus (ORC) en die Stirling enjin (SE), is as geskikte toestelle uitgewys om
die herwonne hitte op grond van brontemperature tussen 60 ºC en 800 ºC in ʼn bruikbare vorm
om te sit. Hierdie tesis het op vryesuier-SE’s gekonsentreer, met klem op die hitteruiler. Meer
bepaald is die termodinamiese werkverrigting van ʼn SE-hitteruiler ondersoek. Daar is bevind
dat ʼn hitteruiler met ʼn geweefde koperdraadmaas-samestelling oor ʼn betreklik groot gas-totmetaal-
en metaal-tot-vloeistof-oordragoppervlakte beskik. Die verhitter en verkoeler is in ʼn
buis-in-mantel-vorm ontwerp, met die werksvloeistof wat deur tien koperbinnepype vloei en ʼn
koelmiddel deur die mantelbuis. ʼn Saamgevoegde-parameter-model is gebruik om die termodinamiese gedrag van die SEhitteruiler
te beskryf. Ten einde die teoretiese resultate te bevestig, is ʼn eenrigtingvloeiproefondersoek
uitgevoer. Die teoretiese model is aangepas sodat dit die SE-hitteruiler kon
simuleer. Ná die nodige verstellings is daar bevind dat die teoretiese model die proefneming
akkuraat voorspel. Laastens was ʼn dinamiese ontleding van die SE-hitteruiler ook onderneem
om te toon dat, hoewel dit vibreer, die hitteruiler proef samestel inderdaad veilig is.
|
26 |
Experimental and numerical investigation of the heat transfer between a high temperature reactor pressure vessel and the outside of the concrete confinement structureVan der Merwe, David-John 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A high temperature reactor (HTR) generates heat inside of the reactor core through
nuclear fission, from where the heat is transferred through the core and heats up the reactor pressure vessel (RPV). The heat from the RPV is transported passively through the
reactor cavity, where it is cooled by the reactor cavity cooling system (RCCS), through
the concrete confinement structure and ultimately into the environment. The concrete
confinement structure can withstand temperatures of up to 65°C for normal operating
conditions and temperatures of up to 125°C during an emergency. This project endeavours to research the heat transfer between an HTR’s RPV and the outside of the
concrete confinement structure by utilising three investigative approaches: experimental,
computational fluid dynamics (CFD) and analytical.
The first approach, an experimental analysis, required the development of an experi-
mental model. The model was used to perform experiments and gather temperature data
that could be used to verify the accuracy of the CFD simulations. The second approach
was a CFD analysis of the experimental model, and the external concrete temperatures
from the simulation were compared with the temperatures measured with the experimen-
tal model. Finally, an analytical analysis was performed in order to better understand
CFD and how CFD solves natural convection-type problems. The experiments were performed successfully and the measurements taken were com-
pared with the CFD results. The CFD results are in good agreement with the Dry
experiments, but not with the Charged experiments. It was identified that the inaccurate
results for the CFD simulations of the Charged experiments arose due to convective heat
leakage through gaps in the heat shield and between the heat shield and the sides of the
experimental model. A computer program was developed for the analytical analysis and
it was established that the program could successfully solve the natural convection in a
square cavity - as required. / AFRIKAANSE OPSOMMING: ’n Hoë temperatuur reaktor (HTR) genereer hitte binne die reaktor kern deur kernsplyting en die hitte word dan deur die kern versprei en verhit die reaktor se drukvat. Die hitte
van die reaktor drukvat word dan passief deur die reaktorholte versprei, waar dit deur
die reaktorholte se verkoelingstelsel afgekoel word, en deur die beton beskermingstruktuur gelei word en uiteindelik die omgewing bereik. Die beton beskermingstruktuur kan
temperature van tot 65°C onder normale operasietoestande van die reaktor weerstaan, en
temperature van tot 125°C tydens ’n noodgeval. Hierdie projek poog om die hitte-oordrag
tussen ’n HTR-reaktor drukvat en die buitekant van die beton beskermingstruktuur te on-
dersoek deur gebruik te maak van drie ondersoekbenaderings: eksperimenteel, numeriese
vloei dinamika (NVD) en analities. Die eerste benadering, ’n eksperimentele analise, het die ontwikkeling van ’n eksper-
imentele model vereis. Die model is gebruik om eksperimente uit te voer en temperatu-
urmetings te neem wat gebruik kon word om die akkuraatheid van die NVD simulasies
te bevestig. Die tweede benadering was ’n NVD-analise van die eksperimentele model,
en die eksterne betontemperature verkry van die simulasies is vergelyk met die gemete
temperature van die eksperimente. Uiteindelik is ’n analitiese analise uitgevoer ten einde
NVD beter te verstaan en hoe NVD natuurlike konveksie-tipe probleme sal oplos.
Die eksperimente is suksesvol uitgevoer en die metings is gebruik om die NVD resultate
mee te vergelyk. Die NVD resultate van die Droë eksperimente het goeie akkuraatheid
getoon. Dit was nie die geval vir die Gelaaide eksperimente nie. Daar is geïdentifiseer dat
die verskille in resultate tussen die NVD en die eksperimente aan natuurlike konveksie
hitte verliese deur gapings in die hitteskuld en tussen die hitteskuld en die kante van
die eksperimentele model toegeskryf kan word. ’n Rekenaarprogram is geskryf vir die
analitiese ontleding en die program kon suksesvol die natuurlike konveksie in ’n vierkantige
ruimte oplos.
|
27 |
The influence of thorium on the temperature reactivity coefficient in a 400 MWth pebble bed high temperature plutonium incinerator reactor / Guy Anthony RichardsRichards, Guy Anthony January 2012 (has links)
Social and environmental justice for a growing and developing global population requires
significant increases in energy use. A possible means of contributing to this energy increase
is to incinerate plutonium from spent fuel of pressurised light water reactors (Pu(PWR)) in
high-temperature reactors such as the Pebble Bed Modular Reactor Demonstration Power
Plant 400 MWth (PBMR-DPP-400). Previous studies showed that at low temperatures a
3 g Pu(PWR) loading per fuel sphere or less had a positive uniform temperature reactivity
coefficient (UTC) in a PBMR DPP-400. The licensing of this fuel design is consequently
unlikely. In the present study it was shown by diffusion simulations of the neutronics, using
VSOP-99/05, that there is a fuel design containing thorium and plutonium that achieves a
negative maximum UTC. Further, a fuel design containing 12 g Pu(PWR) loading per fuel
sphere achieved a negative maximum UTC as well as the other PBMR (Ltd.) safety limits of
maximum power per fuel sphere, fast fluence and maximum temperatures. It is proposed
that the low average thermal neutron flux, caused by reduced moderation and increased
absorption of thermal neutrons due to the higher plutonium loading, is responsible for these
effects. However, to fully understand the mechanisms involved a detailed quantitative
analysis of the roll of each factor is required. A 12 g Pu(PWR) loading per fuel sphere
analysis shows a burn-up of 180.7 GWd/tHM which is approximately double the proposed
PBMR (Ltd.) low enriched uranium fuel burn-up. The spent fuel has only a decrease of
24.5 % in the Pu content which is sub-optimal with respect to proliferation and waste
disposal objectives. Incinerating Pu(PWR) in the PBMR-DPP 400 MWth is potentially
licensable and economically feasible and should be considered for application by industry. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2012
|
28 |
The influence of thorium on the temperature reactivity coefficient in a 400 MWth pebble bed high temperature plutonium incinerator reactor / Guy Anthony RichardsRichards, Guy Anthony January 2012 (has links)
Social and environmental justice for a growing and developing global population requires
significant increases in energy use. A possible means of contributing to this energy increase
is to incinerate plutonium from spent fuel of pressurised light water reactors (Pu(PWR)) in
high-temperature reactors such as the Pebble Bed Modular Reactor Demonstration Power
Plant 400 MWth (PBMR-DPP-400). Previous studies showed that at low temperatures a
3 g Pu(PWR) loading per fuel sphere or less had a positive uniform temperature reactivity
coefficient (UTC) in a PBMR DPP-400. The licensing of this fuel design is consequently
unlikely. In the present study it was shown by diffusion simulations of the neutronics, using
VSOP-99/05, that there is a fuel design containing thorium and plutonium that achieves a
negative maximum UTC. Further, a fuel design containing 12 g Pu(PWR) loading per fuel
sphere achieved a negative maximum UTC as well as the other PBMR (Ltd.) safety limits of
maximum power per fuel sphere, fast fluence and maximum temperatures. It is proposed
that the low average thermal neutron flux, caused by reduced moderation and increased
absorption of thermal neutrons due to the higher plutonium loading, is responsible for these
effects. However, to fully understand the mechanisms involved a detailed quantitative
analysis of the roll of each factor is required. A 12 g Pu(PWR) loading per fuel sphere
analysis shows a burn-up of 180.7 GWd/tHM which is approximately double the proposed
PBMR (Ltd.) low enriched uranium fuel burn-up. The spent fuel has only a decrease of
24.5 % in the Pu content which is sub-optimal with respect to proliferation and waste
disposal objectives. Incinerating Pu(PWR) in the PBMR-DPP 400 MWth is potentially
licensable and economically feasible and should be considered for application by industry. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2012
|
29 |
Development of a novel nitriding plant for the pressure vessel of the PBMR core unloading device / Ryno Willem Nell.Nell, Ryno Willem January 2010 (has links)
The Pebble Bed Modular Reactor (PBMR) is one of the most technologically advanced developments in South Africa. In order to build a commercially viable demonstration power plant, all the specifically and uniquely designed equipment must first be qualified. All the prototype equipment is tested at the Helium Test Facility (HTF) at Pelindaba. One of the largest components that are tested is the Core Unloading Device (CUD).
The main function of the CUD is to unload fuel from the bottom of the reactor core to enable circulation of the fuel core. The CUD housing vessel forms part of the reactor pressure boundary. Pebble-directing valves and other moving machinery are installed inside its machined inner surface. It is essential that the interior surfaces of the CUD are case hardened to provide a corrosion- and wear-resistant layer. Cold welding between the moving metal parts and the machined surface must also be prevented. Nitriding is a case hardening process that adds a hardened wear- and corrosion-resistant layer that will also prevent cold welding of the moving parts in the helium atmosphere.
Only a few nitriding furnaces exist that can house a forging as large as the CUD of the PBMR. Commercial nitriding furnaces in South Africa are all too small and have limited flexibility in terms of the nitriding process. The nitriding of a vessel as large as the CUD has not yet been carried out commercially. The aim of this work was to design and develop a custom-made nitriding plant to perform the nitriding of the first PBMR/HTF CUD.
Proper process control is essential to ensure that the required nitrided case has been obtained. A new concept for a gas nitriding plant was developed using the nitrided vessel interior as the nitriding process chamber. Before the commencement of detail design, a laboratory test was performed on a scale model vessel to confirm concept feasibility. The design of the plant included the mechanical design of various components essential to the nitriding process. A special stirring fan with an extended length shaft was designed, taking whirling speed into account. Considerable research was performed on the high temperature use of the various components to ensure the safe operation of the plant at temperatures of up to 600°C. Nitriding requires the use of hazardous gases such as ammonia, oxygen and nitrogen. Hydrogen is produced as a by-product and therefore safety was the most important design parameter. Thermohydraulic analyses, i.e. heat transfer and pressure drop calculations in pipes, were also performed to ensure the successful process design of the nitriding plant.
The nitriding plant was subsequently constructed and operated to verify the correct design. A large amount of experimental and operating data was captured during the actual operation of the plant. This data was analysed and the thermohydraulic analyses were verified. Nitrided specimens were subjected to hardness and layer thickness tests.
The measured temperature of the protruding fan shaft was within the limits predicted by Finite Element Analysis (FEA) models. Graphs of gas flow rates and other operation data confirmed the inverse proportionality between ammonia supply flow rate and measured dissociation rate. The design and operation of the nitriding plant were successful as a nitride layer thickness of 400 μm and hardness of 1 200 Vickers hardness (VHN) was achieved.
This research proves that a large pressure vessel can successfully be nitrided using the vessel interior as a process chamber. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
|
30 |
Development of a novel nitriding plant for the pressure vessel of the PBMR core unloading device / Ryno Willem Nell.Nell, Ryno Willem January 2010 (has links)
The Pebble Bed Modular Reactor (PBMR) is one of the most technologically advanced developments in South Africa. In order to build a commercially viable demonstration power plant, all the specifically and uniquely designed equipment must first be qualified. All the prototype equipment is tested at the Helium Test Facility (HTF) at Pelindaba. One of the largest components that are tested is the Core Unloading Device (CUD).
The main function of the CUD is to unload fuel from the bottom of the reactor core to enable circulation of the fuel core. The CUD housing vessel forms part of the reactor pressure boundary. Pebble-directing valves and other moving machinery are installed inside its machined inner surface. It is essential that the interior surfaces of the CUD are case hardened to provide a corrosion- and wear-resistant layer. Cold welding between the moving metal parts and the machined surface must also be prevented. Nitriding is a case hardening process that adds a hardened wear- and corrosion-resistant layer that will also prevent cold welding of the moving parts in the helium atmosphere.
Only a few nitriding furnaces exist that can house a forging as large as the CUD of the PBMR. Commercial nitriding furnaces in South Africa are all too small and have limited flexibility in terms of the nitriding process. The nitriding of a vessel as large as the CUD has not yet been carried out commercially. The aim of this work was to design and develop a custom-made nitriding plant to perform the nitriding of the first PBMR/HTF CUD.
Proper process control is essential to ensure that the required nitrided case has been obtained. A new concept for a gas nitriding plant was developed using the nitrided vessel interior as the nitriding process chamber. Before the commencement of detail design, a laboratory test was performed on a scale model vessel to confirm concept feasibility. The design of the plant included the mechanical design of various components essential to the nitriding process. A special stirring fan with an extended length shaft was designed, taking whirling speed into account. Considerable research was performed on the high temperature use of the various components to ensure the safe operation of the plant at temperatures of up to 600°C. Nitriding requires the use of hazardous gases such as ammonia, oxygen and nitrogen. Hydrogen is produced as a by-product and therefore safety was the most important design parameter. Thermohydraulic analyses, i.e. heat transfer and pressure drop calculations in pipes, were also performed to ensure the successful process design of the nitriding plant.
The nitriding plant was subsequently constructed and operated to verify the correct design. A large amount of experimental and operating data was captured during the actual operation of the plant. This data was analysed and the thermohydraulic analyses were verified. Nitrided specimens were subjected to hardness and layer thickness tests.
The measured temperature of the protruding fan shaft was within the limits predicted by Finite Element Analysis (FEA) models. Graphs of gas flow rates and other operation data confirmed the inverse proportionality between ammonia supply flow rate and measured dissociation rate. The design and operation of the nitriding plant were successful as a nitride layer thickness of 400 μm and hardness of 1 200 Vickers hardness (VHN) was achieved.
This research proves that a large pressure vessel can successfully be nitrided using the vessel interior as a process chamber. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
|
Page generated in 0.047 seconds