Spelling suggestions: "subject:"pdgfr"" "subject:"dgfr""
1 |
The interaction of the p85 subunit of PI3K with rab proteinsChamberlain, Michael Dean 28 June 2007
The p85 subunit of phosphatidylinositol 3-kinase (PI3K) has long been thought of as a regulatory subunit that has no other function than the regulation of the p110 catalytic subunit. Our laboratory is studying other roles of the p85 subunit, in particular determining the role of the p85 BH domain. The BH domain has homology to GTPase activating protein (GAP) domains that are involved in the stimulation of monomeric G proteins to hydrolyze their bound GTP to GDP. This converts the G protein from its active conformation to its inactive conformation. We have determined that p85 interacts with Rab proteins, monomeric G proteins that regulate vesicle fusion during the endocytosis of receptors. We have shown that p85 binds to Rab5 regardless of nucleotide-bound state of Rab5. The p85 subunit of PI3K has in vitro GAP activity towards Rab5. It was determined that p85 also has in vitro GAP activity towards Rab4, Rab7, Rab6 as well as the Rho-family G proteins, Rac1 and Cdc42. This GAP activity was localized to the BH domain of p85 and mutation of Arg 274 to Ala abolishes the GAP activity of p85. When this p85R274A mutant was expressed in cells, PDGFR degradation was severely inhibited and there was a corresponding increase in the duration of MAPK and Akt signalling. This increase in cell signalling caused a transformed phenotype in cells expressing the p85 protein with the Arg 274 mutation. These cells have lost contact inhibition for growth, are able to grow independent of attachment as well as in the presence of limited growth factors. They also form tumours in nude mice. These cellular effects seem to be due to an increase in receptor recycling because of the loss of the GAP activity of p85. This increase in receptor recycling may interfere with receptor targeting to the late endosome, which would cause the decrease in receptor degradation that is seen in the p85R274A cells.
|
2 |
The interaction of the p85 subunit of PI3K with rab proteinsChamberlain, Michael Dean 28 June 2007 (has links)
The p85 subunit of phosphatidylinositol 3-kinase (PI3K) has long been thought of as a regulatory subunit that has no other function than the regulation of the p110 catalytic subunit. Our laboratory is studying other roles of the p85 subunit, in particular determining the role of the p85 BH domain. The BH domain has homology to GTPase activating protein (GAP) domains that are involved in the stimulation of monomeric G proteins to hydrolyze their bound GTP to GDP. This converts the G protein from its active conformation to its inactive conformation. We have determined that p85 interacts with Rab proteins, monomeric G proteins that regulate vesicle fusion during the endocytosis of receptors. We have shown that p85 binds to Rab5 regardless of nucleotide-bound state of Rab5. The p85 subunit of PI3K has in vitro GAP activity towards Rab5. It was determined that p85 also has in vitro GAP activity towards Rab4, Rab7, Rab6 as well as the Rho-family G proteins, Rac1 and Cdc42. This GAP activity was localized to the BH domain of p85 and mutation of Arg 274 to Ala abolishes the GAP activity of p85. When this p85R274A mutant was expressed in cells, PDGFR degradation was severely inhibited and there was a corresponding increase in the duration of MAPK and Akt signalling. This increase in cell signalling caused a transformed phenotype in cells expressing the p85 protein with the Arg 274 mutation. These cells have lost contact inhibition for growth, are able to grow independent of attachment as well as in the presence of limited growth factors. They also form tumours in nude mice. These cellular effects seem to be due to an increase in receptor recycling because of the loss of the GAP activity of p85. This increase in receptor recycling may interfere with receptor targeting to the late endosome, which would cause the decrease in receptor degradation that is seen in the p85R274A cells.
|
3 |
PLATELET DERIVED GROWTH FACTOR RECEPTOR B (PDGFRB) EXPRESSING CELLS DURING ZEBRAFISH CORONARY VESSEL DEVELOPMENTFierros, Juancarlos 01 June 2017 (has links)
Coronary heart disease is a prevalent issue in developed countries throughout the world. It can have crippling effects on the quality of life and even lead to mortality, in the case of myocardial infarction. Part of the problem is the lack of a robust regenerative response in mammals after injury. Zebrafish have an amazing ability to regenerate after injury, and studies have demonstrated that the regenerative response recapitulates embryonic development. Our lab previously reported the first analysis of coronary vessel development in zebrafish and demonstrated that coronary endothelial cells undergo angiogenesis to form a vascular network. The roles of perivascular cells in this process have not been examined in zebrafish. Using a transgenic reporter line marking pdgfrb expression, I found that pdgfrb is first observed in epicardium at the AV canal. At later stages of coronary vessel development, pdgfrb positive cells become localized to the perivascular region of mature vessels. I also observe that early in development, Tcf21 and pdgfrb co-express, which suggests a close relationship between the epicardium and pdgfrb+ cells. Previous findings from our lab revealed that cxcl12b+ cells localize to large coronary vessels during development. My findings reveal that pdgfrb+ marks perivascular cells of both capillaries and large coronary vessels. Lineage tracing analysis revealed that a subset of pdgfrb+ perivascular cells derive from tcf21 labeled epicardial cells. To see if disruption of Pdgfrb signaling impacts coronary development, I examined pdgfrb mutant hearts. In the Pdgfrb mutant, a mature coronary vessel network fails to form, and instead we observe isolated endothelial cell islands. Lastly, I characterized a transgenic line that expresses a dominant negative form of Pdgfrb (dnpdgfrb) and can be potentially used for later developmental and/or regenerative studies. My findings indicate strong dnpdgfrb induction can be achieved at adult stages. My studies will greatly enhance our current understanding of coronary vessel development, and can be used as the basis for studying perivascular cells and their interactions with endothelial cells after cardiac injury in regeneration.
|
4 |
The role for the p85 subunit of PI3kinase in the regulation of rab proteinsJanuary 2008 (has links)
Upon activation by the platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3'-kinase (PI3K) converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate to activate the PI3K/Akt cellular survival signalling pathway within cells. The p85 subunit of PI3K has also been shown to have GTPase activating protein (GAP) activity towards Rab proteins involved in receptor endocytosis and trafficking, specifically Rab5 and Rab4. Rab5 is responsible for regulating the fusion of vesicles containing activated receptors to traffic them to intracellular early/sorting endosomes. Rab4 is responsible for regulating the exit of receptors to a recycling pathway back to the plasma membrane. The p85 RabGAP activity is responsible for deactivating Rab5 and Rab4 function by accelerating their GTPase activity, resulting in the inactive conformation of Rab5 and Rab4, and decreased vesicle fusion events during receptor trafficking. The work in this thesis was performed to understand how p85 interacts with, and regulates, Rab5 and Rab4. Glutathione S-transferase pulldown experiments showed the p85 protein was able to interact with Rab5 through its BH domain and another unidentified domain. Cells expressing a p85-R274A mutant defective for RabGAP activity displayed increased PDGFR activation and decreased degradation. To understand the mechanism of decreased PDGFR degradation, PDGFR immunoprecipitation experiments showed the PDGFR was ubiquitinated, a signal needed for multi-vesicular body sorting. Biotinylation experiments showed the PDGFR was being more rapidly endocytosed and then sequestered within the cell. Immunofluorescence experiments showed cells expressing the p85-R274A mutant clearly altered PDGFR trafficking during receptor endocytosis. These results suggest the PDGFR was not spending longer periods of time on the cell surface to continue signalling and was not lacking the modification needed to be sorted to a degradative pathway. The defective trafficking observed in p85-R274A expressing cells, over time, may block PDGFR trafficking, which prevents normal PDGFR dephosphorylation and degradation, and could be attributed to a lack of sufficient cytosolic Rab5-GDP and Rab4-GDP required to associate with new membranes and facilitate additional vesicle fusion events. The lack of lysosomal targeting allows the receptor to be sequestered in cells, but still have the ability to signal as the receptor would not be targeted to multi-vesicular bodies where signalling is abolished.
|
5 |
Scaffolding functions of MAGI-2 in the PTEN mediated attenuation of the PI3K/Akt signalling pathwayPoland, Sharon Franceska 24 September 2009
Activated receptor tyrosine kinase (RTK), such as the epidermal growth factor (EGF) receptor (EGFR) and the platelet-derived growth factor (PDGF) receptor (PDGFR), recruit downstream signalling proteins, including phosphatidylinositol 3-kinase (PI3K). PI3K, composed of a regulatory p85 subunit and a catalytic p110 subunit, phosphorylates phosphatidylinositol 4,5-bisphosphate at the 3 position to generate phosphatidylinositol 3,4,5-trisphosphate. This lipid second messenger activates Akt, which promotes cell growth, cell cycle entry and progression, as well as cell survival and cellular migration. PTEN, a tumor suppressor protein, dephosphorylates phosphatidylinositol 3,4,5-trisphosphate at the 3 position, turning off Akt signalling. PTEN contains a C-terminal PDZ binding motif that binds to the PDZ2 domain of MAGI-2, a scaffolding protein that localizes signalling molecules to the plasma membrane. MAGI-2 has ten domains that potentially mediate multiple protein-protein interactions simultaneously. A PTEN associated-complex (PAC) has been described and may contain MAGI-2, PTEN and p85. The PAC is hypothesized to form at the plasma membrane at appropriate sites for PTEN to gain access to its lipid substrates, since the binding of PTEN to MAGI-2 has been shown to enhance the suppression of PI3K-mediated Akt signalling. In order to better understand the role of the PAC in attenuation of the Akt signalling pathway, regions of the MAGI-2 scaffolding protein were mapped to identify the interactions taking place in the PAC. MAGI-2, and its individual domains, were expressed as GST fusion proteins. These were immobilized onto beads and allowed to bind to cellular proteins including PTEN, p85, PDGFR and EGFR using a GST pull-down experiment. The proteins bound to GST-MAGI-2 were identified using an immunoblot analysis. In vitro pull-down experiments revealed that MAGI-2 PDZ2 and PDZ5 domains bind to PTEN, and both MAGI-2 WW domains were shown to bind to p85. EGFR and PDGFR did not bind to the PDZ domains of MAGI-2 under the conditions studied. In order to study protein-protein interactions in cells, immunoprecipitation assays were also performed. Full length MAGI-2 was expressed tagged to a Myc epitope. This was used in immunoprecipitation assays to determine if MAGI-2 could co-immunoprecipitate with proteins involved in the Akt signalling pathway, such as PTEN, p85, PDGFR and EGFR. MAGI-2 can co-immunoprecipitate with PTEN upon 5 min EGF stimulation however, this result was inconclusive because replicate experiments did not verify this initial observation. MAGI-2 does not co-immunoprecipitate with the EGFR nor p85, under the conditions tested. We examined for these interactions after 5 min of growth factor stimulation and more experiments that test different time points after growth factor stimulation would reveal if these interactions are present at shorter time points. MAGI-2 has been shown to bind to PTEN and p85 in vitro and therefore has the potential to regulate the attenuation of the PI3K/Akt signalling pathway in response to activated EGFR and/or PDGFR.
|
6 |
The role for the p85 subunit of PI3kinase in the regulation of rab proteinsKing, Jennifer C 26 January 2009
Upon activation by the platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3'-kinase (PI3K) converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate to activate the PI3K/Akt cellular survival signalling pathway within cells. The p85 subunit of PI3K has also been shown to have GTPase activating protein (GAP) activity towards Rab proteins involved in receptor endocytosis and trafficking, specifically Rab5 and Rab4. Rab5 is responsible for regulating the fusion of vesicles containing activated receptors to traffic them to intracellular early/sorting endosomes. Rab4 is responsible for regulating the exit of receptors to a recycling pathway back to the plasma membrane. The p85 RabGAP activity is responsible for deactivating Rab5 and Rab4 function by accelerating their GTPase activity, resulting in the inactive conformation of Rab5 and Rab4, and decreased vesicle fusion events during receptor trafficking. The work in this thesis was performed to understand how p85 interacts with, and regulates, Rab5 and Rab4. Glutathione S-transferase pulldown experiments showed the p85 protein was able to interact with Rab5 through its BH domain and another unidentified domain. Cells expressing a p85-R274A mutant defective for RabGAP activity displayed increased PDGFR activation and decreased degradation. To understand the mechanism of decreased PDGFR degradation, PDGFR immunoprecipitation experiments showed the PDGFR was ubiquitinated, a signal needed for multi-vesicular body sorting. Biotinylation experiments showed the PDGFR was being more rapidly endocytosed and then sequestered within the cell. Immunofluorescence experiments showed cells expressing the p85-R274A mutant clearly altered PDGFR trafficking during receptor endocytosis. These results suggest the PDGFR was not spending longer periods of time on the cell surface to continue signalling and was not lacking the modification needed to be sorted to a degradative pathway. The defective trafficking observed in p85-R274A expressing cells, over time, may block PDGFR trafficking, which prevents normal PDGFR dephosphorylation and degradation, and could be attributed to a lack of sufficient cytosolic Rab5-GDP and Rab4-GDP required to associate with new membranes and facilitate additional vesicle fusion events. The lack of lysosomal targeting allows the receptor to be sequestered in cells, but still have the ability to signal as the receptor would not be targeted to multi-vesicular bodies where signalling is abolished.
|
7 |
Interaction between p85 and Rab5 in the presences and absence of phosphorylated PDGFR peptide2012 January 1900 (has links)
The adaptor subunit of phosphatidylinositol 3'-kinases (PI3K), p85, is involved in many different biological processes. Recent studies have shown that one of these functions is to serve as a GTPase activating protein (GAP) towards Rab5, a small monomeric G-protein. Rab5, like other G-proteins, can bind to either GDP or GTP in vivo, assuming its inactive and active form, respectively. The p85 protein has been shown to associate with both the nucleotide-bound and nucleotide-free states of Rab5. It has also been shown that p85 associates with activated, phosphorylated platelet-derived growth factor receptors (PDGFRs) via its two SH2 domains, and that upon binding there is a conformational change in the p85 protein which leads to a derepression of p110 kinase activity. The purpose of this study was to analyze if binding of the activated PDGFR peptides to p85 affects its Rab5GAP activity, as well as to measure the binding affinity of p85 towards Rab5 in each of its nucleotide-bound states. GAP assays were performed to measure the effect that peptide analogs of both the activated and inactivated PDGFR had on p85 Rab5GAP activity, while the binding affinity of p85 towards Rab5 was measured using surface plasmon resonance. The results of this study suggest that PDGFR peptides have no significant effect on p85 Rab5GAP activity. Furthermore, p85 appears to have a higher magnitude of binding to nucleotide-associated Rab5 proteins, than nucleotide-free Rab5 proteins. It also appears that p85 forms more stable complexes with Rab5-GTP than with Rab5-GDP. These results further support previous studies that show p85 to be an important regulator of Rab5-mediated endosomal fusion and show that this activity is not regulated by binding to the activated PDGFR itself.
|
8 |
The role for the p85 subunit of PI3kinase in the regulation of rab proteinsKing, Jennifer C 26 January 2009 (has links)
Upon activation by the platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3'-kinase (PI3K) converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate to activate the PI3K/Akt cellular survival signalling pathway within cells. The p85 subunit of PI3K has also been shown to have GTPase activating protein (GAP) activity towards Rab proteins involved in receptor endocytosis and trafficking, specifically Rab5 and Rab4. Rab5 is responsible for regulating the fusion of vesicles containing activated receptors to traffic them to intracellular early/sorting endosomes. Rab4 is responsible for regulating the exit of receptors to a recycling pathway back to the plasma membrane. The p85 RabGAP activity is responsible for deactivating Rab5 and Rab4 function by accelerating their GTPase activity, resulting in the inactive conformation of Rab5 and Rab4, and decreased vesicle fusion events during receptor trafficking. The work in this thesis was performed to understand how p85 interacts with, and regulates, Rab5 and Rab4. Glutathione S-transferase pulldown experiments showed the p85 protein was able to interact with Rab5 through its BH domain and another unidentified domain. Cells expressing a p85-R274A mutant defective for RabGAP activity displayed increased PDGFR activation and decreased degradation. To understand the mechanism of decreased PDGFR degradation, PDGFR immunoprecipitation experiments showed the PDGFR was ubiquitinated, a signal needed for multi-vesicular body sorting. Biotinylation experiments showed the PDGFR was being more rapidly endocytosed and then sequestered within the cell. Immunofluorescence experiments showed cells expressing the p85-R274A mutant clearly altered PDGFR trafficking during receptor endocytosis. These results suggest the PDGFR was not spending longer periods of time on the cell surface to continue signalling and was not lacking the modification needed to be sorted to a degradative pathway. The defective trafficking observed in p85-R274A expressing cells, over time, may block PDGFR trafficking, which prevents normal PDGFR dephosphorylation and degradation, and could be attributed to a lack of sufficient cytosolic Rab5-GDP and Rab4-GDP required to associate with new membranes and facilitate additional vesicle fusion events. The lack of lysosomal targeting allows the receptor to be sequestered in cells, but still have the ability to signal as the receptor would not be targeted to multi-vesicular bodies where signalling is abolished.
|
9 |
Scaffolding functions of MAGI-2 in the PTEN mediated attenuation of the PI3K/Akt signalling pathwayPoland, Sharon Franceska 24 September 2009 (has links)
Activated receptor tyrosine kinase (RTK), such as the epidermal growth factor (EGF) receptor (EGFR) and the platelet-derived growth factor (PDGF) receptor (PDGFR), recruit downstream signalling proteins, including phosphatidylinositol 3-kinase (PI3K). PI3K, composed of a regulatory p85 subunit and a catalytic p110 subunit, phosphorylates phosphatidylinositol 4,5-bisphosphate at the 3 position to generate phosphatidylinositol 3,4,5-trisphosphate. This lipid second messenger activates Akt, which promotes cell growth, cell cycle entry and progression, as well as cell survival and cellular migration. PTEN, a tumor suppressor protein, dephosphorylates phosphatidylinositol 3,4,5-trisphosphate at the 3 position, turning off Akt signalling. PTEN contains a C-terminal PDZ binding motif that binds to the PDZ2 domain of MAGI-2, a scaffolding protein that localizes signalling molecules to the plasma membrane. MAGI-2 has ten domains that potentially mediate multiple protein-protein interactions simultaneously. A PTEN associated-complex (PAC) has been described and may contain MAGI-2, PTEN and p85. The PAC is hypothesized to form at the plasma membrane at appropriate sites for PTEN to gain access to its lipid substrates, since the binding of PTEN to MAGI-2 has been shown to enhance the suppression of PI3K-mediated Akt signalling. In order to better understand the role of the PAC in attenuation of the Akt signalling pathway, regions of the MAGI-2 scaffolding protein were mapped to identify the interactions taking place in the PAC. MAGI-2, and its individual domains, were expressed as GST fusion proteins. These were immobilized onto beads and allowed to bind to cellular proteins including PTEN, p85, PDGFR and EGFR using a GST pull-down experiment. The proteins bound to GST-MAGI-2 were identified using an immunoblot analysis. In vitro pull-down experiments revealed that MAGI-2 PDZ2 and PDZ5 domains bind to PTEN, and both MAGI-2 WW domains were shown to bind to p85. EGFR and PDGFR did not bind to the PDZ domains of MAGI-2 under the conditions studied. In order to study protein-protein interactions in cells, immunoprecipitation assays were also performed. Full length MAGI-2 was expressed tagged to a Myc epitope. This was used in immunoprecipitation assays to determine if MAGI-2 could co-immunoprecipitate with proteins involved in the Akt signalling pathway, such as PTEN, p85, PDGFR and EGFR. MAGI-2 can co-immunoprecipitate with PTEN upon 5 min EGF stimulation however, this result was inconclusive because replicate experiments did not verify this initial observation. MAGI-2 does not co-immunoprecipitate with the EGFR nor p85, under the conditions tested. We examined for these interactions after 5 min of growth factor stimulation and more experiments that test different time points after growth factor stimulation would reveal if these interactions are present at shorter time points. MAGI-2 has been shown to bind to PTEN and p85 in vitro and therefore has the potential to regulate the attenuation of the PI3K/Akt signalling pathway in response to activated EGFR and/or PDGFR.
|
10 |
Die Rolle der IGF-Achse in Kombination mit anderen Wachstumsfaktor-Signalwegen bei der Resistenz oder dem Ansprechen von kolorektalen Karzinomen auf eine Radiochemotherapie / The role of the IGF-axis in combination with other growth factor signaling pathways in response or resistance of colorectal carcinomas to radiochemotherapySeemann, Henning 17 April 2013 (has links)
Tumorerkrankungen stellen in der westlichen Welt eines der wichtigsten Gesundheitsprobleme dar. Das kolorektale Karzinom ist dabei die dritthäufigste Tumorneuerkrankung. Bei fortgeschrittenem Krankheitsverlauf wird zumeist eine kombinierte Radiochemotherapie durchgeführt, bei der zusätzlich zur Bestrahlung Zytostatika wie 5-Fluoruracil oder Oxaliplatin verabreicht werden. Da die eingesetzten Zytostatika nicht ausschließlich gegen Tumorzellen wirken, führt der Einsatz dieser oft zu massiven Nebenwirkungen wie Magen- und Darmproblemen, Myelosuppression und Haarausfall. Neue Therapieansätze versuchen daher Ziele in die Behandlung mit aufzunehmen die stärker karzinomspezifisch sind, wie z.B. verschiedenen Rezeptortyrosinkinasen. Viele Rezeptortyrosinkinasen und deren Liganden liegen im Tumor und umliegenden Gewebe oft dereguliert vor und spielen eine wichtige Rolle bei der Regulierung des Tumorwachstums, der Tumorangiogenese und der Metastasenbildung.
In dieser Arbeit konnte für die drei kolorektalen Karzinomzelllinien DLD-1, SW837 und Caco 2 gezeigt werden, dass die gleichzeitige Inhibition des Insulin-like Growth Factor-I Receptor (IGF-IR) und des Epidermal Growth Factor Receptor (EGFR) mit den Tyrosinkinaseinhibitoren AEW-541 (IGF-IR-Inhibitor) und Erlotinib (EGFR-Inhibitor) in vitro zu einem deutlich verstärkten Therapieeffekt der 5-Fluoruracil-basierten Radiochemotherapie führt. Für Xenografttumore der Zelllinie SW837 konnte dieser Effekt auch in vivo bestätigt werden.
Mit Hilfe der Co Immunpräzipitation und eines Proximity Ligation Assays konnten in den Kolonkarzinomzelllinien SW480 und DLD-1 Hybridrezeptoren zwischen dem EGFR und dem IGF-IR nachgewiesen werden. Zusätzlich konnte gezeigt werden, dass eine Ligandenstimulation der Rezeptoren zu einer vermehrten EGFR/IGF-IR-Hybridrezeptorbildung führt. Weitere Analysen zeigten, dass für die induzierte Heterodimerisierung beide Liganden notwendig sind und beide Rezeptoren funktionsfähig sein müssen. Mit Hilfe des Proximity Ligation Assays konnten IGF-IR/EGFR-Hybridrezeptoren auch in humanen Rektumtumoren nachgewiesen werden.
Im letzten Teil der Arbeit wurde die Bedeutung des Platelet-derived Growth Factor Receptor β (PDGFR-β) in kolorektalen Karzinomzellen untersucht. In SW480- und DLD-1-Zellen führte die Inhibition des PDGFR-β mit Hilfe von spezifischer siRNA zu einer, über den PI3K-Signalweg vermittelten, moderat verminderten Proliferationsrate. Die Verwendung des PDGFR-β-Inhibitors Ki11502 führte in den Zelllinien zu einem starken Rückgang in der Proliferationsrate und zu Veränderungen im Zellzyklus der Zellen. Diese wurden durch eine verminderte Cyclin-B1-Expression hervorgerufen. Weitere Analysen zeigten, dass der Inhibitor Ki11502 neben dem PDGFR-β auch den Rezeptor cKIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) und die Zellmembran-assoziierte zytoplasmatische Tyrosinkinase SRC (v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog) inhibiert.
|
Page generated in 0.0511 seconds