• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control And Topology Improvements In Half-bridge Dc-dc Converters

Deng, Songquan 01 January 2005 (has links)
Efficiency and transient response are two key requirements for DC-DC converters. Topology and control are two key topics in this dissertation. A variety of techniques for DC-DC converter performance improvement are presented in this work. Focusing on the efficiency issue, a variety of clamping techniques including both active and passive methods are presented after the ringing issues in DC-DC converters are investigated. By presenting the clamping techniques, a big variety of energy management concepts are introduced. The active bridge-capacitor tank clamping and FET-diode-capacitor tank clamping are close ideas, which transfer the leakage inductor energy to clamping capacitor to prevent oscillation between leakage inductor and junction capacitor of MOSFETs. The two-FET-clamping tank employs two MOSFETs to freewheeling the leakage current when the main MOSFETs of the half-bridge are both off. Driving voltage variation on the secondary side Synchronous Rectifier (SR) MOSFETs in self-driven circuit due to input voltage variation in bus converter applications is also investigated. One solution with a variety of derivations is proposed using zerner-capacitor combination to clamping the voltage while maintaining reasonable power losses. Another efficiency improvement idea comes from phase-shift concept in DC-DC converters. By employing phase-shift scheme, the primary side and the secondary side two MOSFETs have complementary driving signals respectively, which allow the MOSFET to be turned on with Zero Voltage Switching (ZVS). Simulation verified the feasibility of the proposed phase-shifted DC-DC converter. From the control scheme point of view, a novel peak current mode control concept for half-bridge topologies is presented. Aiming at compensating the imbalanced voltage due to peak current mode control in symmetric half-bridge topologies, an additional voltage compensation loop is used to bring the half-bridge capacitor voltage back to balance. In the proposed solutions, one scheme is applied on symmetric half-bridge topology and the other one is applied on Duty-cycle-shifted (DCS) half-bridge topology. Both schemes employ simple circuitry and are suitable for integration. Loop stability issues are also investigated in this work. Modeling work shows the uncompensated half-bridge topology cannot be stabilized under all conditions and the additional compensation loop helps to prevent the voltage imbalance effectively.
2

An Inductor Emulator Approach to Peak Current-mode Control in a 4-Phase Buck Regulator

January 2017 (has links)
abstract: High-efficiency DC-DC converters make up one of the important blocks of state-of-the-art power supplies. The trend toward high level of transistor integration has caused load current demands to grow significantly. Supplying high output current and minimizing output current ripple has been a driving force behind the evolution of Multi-phase topologies. Ability to supply large output current with improved efficiency, reduction in the size of filter components, improved transient response make multi-phase topologies a preferred choice for low voltage-high current applications. Current sensing capability inside a system is much sought after for applications which include Peak-current mode control, Current limiting, Overload protection. Current sensing is extremely important for current sharing in Multi-phase topologies. Existing approaches such as Series resistor, SenseFET, inductor DCR based current sensing are simple but their drawbacks such low efficiency, low accuracy, limited bandwidth demand a novel current sensing scheme. This research presents a systematic design procedure of a 5V - 1.8V, 8A 4-Phase Buck regulator with a novel current sensing scheme based on replication of the inductor current. The proposed solution consists of detailed system modeling in PLECS which includes modification of the peak current mode model to accommodate the new current sensing element, derivation of power-stage and Plant transfer functions, Controller design. The proposed model has been verified through PLECS simulations and compared with a transistor-level implementation of the system. The time-domain parameters such as overshoot and settling-time simulated through transistor-level implementation is in close agreement with the results obtained from the PLECS model. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
3

Design Of An Educational Purpose Multifunctional Dc/dc Converter Board

Baglan, Fuat Onur 01 August 2008 (has links) (PDF)
In this thesis a multifunctional DC/DC converter board will be developed for utilization as an educational experiment set in the switched-mode power conversion laboratory of power electronic courses. The board has a generic power-pole structure allowing for easy configuration of various power converter topologies and includes buck, boost, buck-boost, flyback, and forward converter topologies. All the converters can be operated in the open-loop control mode with a switching frequency range of 30-100 kHz and a maximum output power of 20 W. Also the buck converter can be operated in voltage mode control and the buck-boost converter can be operated in peak-current-mode control for the purpose of demonstrating the closed loop control performance of DC/DC converters. The designed board allows for experimentation on the DC/DC converters to observe the macroscopic (steadystate/ dynamic, PWM cycle and low frequency) and microscopic (switching dynamic) behavior of the converters. In the experiments both such characteristics can be clearly observed such that students at basic learning level (involving only the macroscopic behavior), and students at advanced learning level (additionally involving the parasitic effects) can benefit from the experiments. The thesis reviews the switch mode conversion principles, gives the board design and proceeds with the experiments illustrating the capabilities of the experimental system.
4

Analysis and Comparison of Popular Models for Current-Mode Control of Switch Mode Power Supplies

Kotecha, Ramchandra M. 16 March 2011 (has links)
No description available.
5

Spínaný zdroj s digitální řídící smyčkou / Power switch source with digital loop

Zápeca, Jan January 2012 (has links)
The diploma thesis is describing how forward converter works. The diploma thesis presents the function of forward converter with demagnetizing winding and presents the function of two-switched forward converter. The diploma thesis descibes the behaviour of continuous current mode and discontinuous current mode. The diploma thesis explains the reasons for implementation feedback and presents the basic types of compensations. The project deals with AC analysis of two-switched forward converter with continuous peak current mode control. The Analog prototyping metod is used for digital control design. The function of the converter was tested in laboratory. The laboratory results have been compared with the theoretical and the simulation results.

Page generated in 0.0312 seconds